Skip to main content
Log in

Macroporous glass-ceramic materials with bioactive properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present research work, glass powders and three different organic starches were used to realize macroporous glass-ceramic scaffolds for bone substitutions. For this purpose, bioactive glass powders belonging to the system SiO2–CaO–Na2O–MgO were mixed in a liquid medium with the desired amount of the selected organic phase. Afterwards, by progressively raising the temperature, the water uptake of starches occurred and led to the gelling of the whole system. The resultant gel underwent two thermal treatments in order to eliminate the organic phase and to allow the sintering of the glassy phase. In this way, macroporous glass-ceramic scaffolds were successfully prepared. The samples were characterized by means of optical and scanning electron microscopy with compositional analysis. The volume and mean size of the obtained porosity were investigated by means of mercury intrusion porosimetry, whereas its morphology was assessed by means of microscopic observations. The structure of the original and the resultant materials were investigated by X-ray diffraction. In order to study the reactivity of the scaffolds towards physiological media, the samples were soaked in a simulated body fluid for various times. On their soaked surfaces, scanning electron microscopy and compositional analysis were carried out in order to assess their bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. O. Hollinger, J. Brekke, E. Gruskin and D. Lee, Clin. Orthop. 324 (1996) 55.

    Google Scholar 

  2. A. Ignatius, C. Schmidt, D. Kaspar and L. E. Claes, J. Biomed. Mater. Res. 55 (2001) 285.

    Google Scholar 

  3. C. J. Damien and J. R. Parsons, ibid. 2 (1999) 187.

    Google Scholar 

  4. W. Suchanek and M. Yoshimura, J. Mater. Res. 13 (1998) 94.

    Google Scholar 

  5. T. Koshino, T. Murase, T. Takagi and T. Saito, Biomaterials 22 (2001) 1579.

    Google Scholar 

  6. K. D. Johnsons, K. E. Freirson and T. S. Keller, J. Othop. Res. 14 (1996) 351.

    Google Scholar 

  7. Y. S. Chang, M. Oka, T. Nakamura and H. O. Gu, J. Biomed. Mater. Res. 30 (1996) 117.

    Google Scholar 

  8. A. Okazaki, T. Koshino, T. Saito and T. Takagi, Biomaterials 21 (2000) 483.

    Google Scholar 

  9. H. Kim, F. Miyaji and T. Kokubo, J. Am. Ceram. Soc. 78(9) (1995) 2405.

    Google Scholar 

  10. W. Cao and L. L. Hench, Ceram. Int. 22 (1996) 493.

    Google Scholar 

  11. H. M. Kim, F. Miyaji, T. Kokubo, C. Ohtsuki and T. Nakamura, J. Am. Cer. Soc. 78(9) (1995) 2405.

    Google Scholar 

  12. E. Verné, R. Defilippi, C. Vitale Brovarone, G. Karl and J. Vogel, Materials for Medical Engineering 2 (2000) p. 140.

    Google Scholar 

  13. E. Verné, C. Vitale Brovarone and D. Milanese, J. Biom. Mat. Res. (Appl. Biom.) 53 (2000) 408.

    Google Scholar 

  14. E. Verné, C. Vitale Brovarone, C. Moisescu, E. Ghisolfi and E. Marmo, Acta Mater. 48 (2000) 4667.

    Google Scholar 

  15. E. Verné, E. Bona, A. Bellosi, C. Vitale Brovarone and P. Appendino, J. Mat. Sci. 36 (2001) 2801.

    Google Scholar 

  16. C. Vitale Brovarone, E. Verné, A. Krajewski and A. Ravaglioli, J. Eur. Cer. Soc. 21 (2001) 2855.

    Google Scholar 

  17. E. Verné, M. Bosetti, C. Vitale Brovarone, C. Moisescu, F. Lupo, S. Spriano and M. Cannas, Biomaterials 23 (2002) 3395.

    Google Scholar 

  18. C. Klein, K. De Groot, C. Weiqun, L. Yubao and Z. Xingdong, ibid. 15 (1994) 31.

    Google Scholar 

  19. M. Fabbri, G. C. Celotti and A. Ravaglioli, ibid. 16 (1995) 225.

    Google Scholar 

  20. A. Tampieri, G. Celotti, S. Sprio, A. Delcoglaino and S. Franzese, ibid. 22 (2001) 1365.

    Google Scholar 

  21. N. L. Porter, R. M. Pilliar and M. D. Grynpas, J. Biomed. Mater. Res. 56 (2001) 504.

    Google Scholar 

  22. H. Yuna, J. De Brujin, X. Zhang, C. Van Blitterswijk and K. De Groot, ibid. (Appl. Biomater.) 58 (2001) 270.

    Google Scholar 

  23. O. Lyckfeldt and J. M. L. Ferreira, J. Eur. Cer. Soc. 18 (1998) 131.

    Google Scholar 

  24. A. F. Lemos and J. M. F. Ferreira, Mat. Sci. End. C 11 (2000) 35.

    Google Scholar 

  25. M. H. Prado Da Silva, A. F. Lemos, I. R. Gibson, J. M. F. Ferreira and J. D. Santos, J. Non-Cryst. Solids 304 (2002) 286.

    Google Scholar 

  26. H. Ramay and M. Zhang, Biomaterials 24 (2003) 3293.

    Google Scholar 

  27. O. Peitl, E. Zanotto and L. Hench, J. Non-Cryst. Solids 292 (2001) 115.

    Google Scholar 

  28. N. Saris, E. Mervaala, H. Karppanen, J. Khawaja and A. Lewenstam, Clin. Chimica Acta 294 (2000) 1.

    Google Scholar 

  29. J. Vormann, Mol. Aspects Med. 24 (2003) 27.

    Google Scholar 

  30. E. Jallots, Appl. Surf. Sci. 211 (2003) 89.

    Google Scholar 

  31. H. M. Kim, F. Miyaji, T. Kokubo, C. Ohtsuki and T. Nakamura, J. Am. Cer. Soc. 78(9) (1995) 2405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vitale-Brovarone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale-Brovarone, C., Nunzio, S.D., Bretcanu, O. et al. Macroporous glass-ceramic materials with bioactive properties. Journal of Materials Science: Materials in Medicine 15, 209–217 (2004). https://doi.org/10.1023/B:JMSM.0000015480.49061.e1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000015480.49061.e1

Keywords

Navigation