Skip to main content
Log in

Carbon Aerogels for Electrochemical Double Layer Capacitors

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Carbon aerogels are prepared here via pyrolysis of resorcinol-formaldehyde aerogels. Their open porous and electrically conductive structure renders carbon aerogels suitable for the application in supercapacitors. Different types of electrodes can be derived from the sol-gel-precursors of carbon aerogels: Monolithic fibre-reinforced electrodes and polymer-carbon compounds. Both carbon fibre reinforced and polymeric bound aerogel electrodes based on polytetrafluoroethylene (PTFE) have been investigated in this work with respect to their electrical conductivity, surface area and capacitive performance. The capacitance of both electrode types is above 65 F/cm3 in aqueous electrolytes and this meets the demands of supercapacitor electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nickerson, in Proc. Vol. of the 9th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices (Florida Educational Seminars Inc., Deerfield Beach, 1999).

    Google Scholar 

  2. A. Burke, J. Power Sources 91, 37 (2000).

    Google Scholar 

  3. B.V. Tilak and C.-Chen, in Electrochem. Soc. Proc., edited by F.M. Delnik and M. Tomkiewicz (ECS, Chicago, 1995), vol. 95-29, p. 111.

    Google Scholar 

  4. B.E. Conway, Electrochemical Supercapacitors (Kluwer Academic/Plenum Publishers, New York, 1999).

    Google Scholar 

  5. Frackowiak E. Beguin F., Carbon 39, 937 (2001).

    Google Scholar 

  6. H. Pröbstle, R. Saliger, and J. Fricke, Studies in Surface Science and Catalysis (Elsevier Science, Amsterdam, 2001), vol. 128 p. 371.

    Google Scholar 

  7. H. Pröbstle, M. Glora, M. Wiener, C. Schmitt, and J. Fricke, Extended Abstracts of the International Conference on Carbon (Beijing, 2002).

  8. Wencui Li, G. Reichenauer, and J. Fricke, Carbon 40, 2955 (2002).

    Google Scholar 

  9. J.C. Farmer, US patent 5 954 937.

  10. J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, and J.F. Poco, J. Electrochem. Soc. 143, 159 (1996).

    Google Scholar 

  11. R. Petričević, M. Glora, and J. Fricke, Carbon 39, 857 (2001).

    Google Scholar 

  12. R. Petričević, R. Saliger, H. Pröbstle, P. Novak, and J. Fricke, German Patent DE 199 38 822.

  13. R.W. Pekala, J. Mater. Sci. 24, 3221 (1989).

    Google Scholar 

  14. R.W. Pekala and F.M. Kong, J. de Physique (Paris) Colloq. C4, 33 (1989).

    Google Scholar 

  15. V. Bock, A. Emmerling, and J. Fricke, J. Non-Cryst. Solids 225, 69 (1998).

    Google Scholar 

  16. R. Saliger, G. Reichenauer, and J. Fricke, Studies in Surface Science and Catalysis (Elsevier Science, Amsterdam, 2001), vol. 128, p. 381.

    Google Scholar 

  17. R. Saliger, U. Fischer, C. Herta, and J. Fricke, J. Non-Cryst. Solids 225, 81 (1998).

    Google Scholar 

  18. R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller, and B. Dunn, J. Non-Cryst. Solids 225, 74 (1998).

    Google Scholar 

  19. H. Pröbstle, C. Schmitt, and J. Fricke, J. of Power Sources 105, 189 (2002).

    Google Scholar 

  20. R. Saliger, V. Bock, R. Petričević, T. Tillotson, S. Geis, and J. Fricke, J. Non-Cryst. Solids 221, 144 (1997).

    Google Scholar 

  21. R. Petričević, G. Reichenauer, V. Bock, A. Emmerling, and J. Fricke, J. Non-Cryst. Solids 225, 41 (1998).

    Google Scholar 

  22. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Ceram. Soc. 60, 309 (1938).

    Google Scholar 

  23. K. Kaneko, C. Ishii, M. Ruike, and H. Kuwabara, Carbon 30, 1075 (1992).

    Google Scholar 

  24. F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders &; Porous Solids (Academic Press, London, 1999).

    Google Scholar 

  25. M.M. Dubinin and L.V. Radushkevich, Proc. Acad. Sci. USSR 55, 331 (1947).

    Google Scholar 

  26. J. Koresh and A. Soffer, J. Electrochem. Soc. 124, 1379 (1977).

    Google Scholar 

  27. R. Kötz and M. Carlen, Electrochimica Acta 45, 2483 (2000).

    Google Scholar 

  28. John McHardy and Frank Ludwig, Electrochemistry of Semiconductors and Electronics (Noyes Publications, New Jersey, 1992), p. 297.

    Google Scholar 

  29. R. de Levie, Advances in Electrochemistry and Electrochemical Engineering 6, 329 (1967).

    Google Scholar 

  30. H. Keiser, K.D. Beccu, and M.A. Gutjahr, Electrochimica Acta 21, 539 (1976).

    Google Scholar 

  31. Hyun-Kon Song, Hee-Young Hwang, Kun-Hong Lee, and Le H. Dao, Electrochimica Acta 45, 2241 (2000).

    Google Scholar 

  32. U. Fischer, R. Saliger, V. Bock, R. Petričević, and J. Fricke, Journal of Porous Materials 4, 281 (1997).

    Google Scholar 

  33. D. Qu and H. Shi, Journal of Power Sources 74, 99 (1998).

    Google Scholar 

  34. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties (John Wiley &; Sons, New York, 1988).

    Google Scholar 

  35. H. Shi, Electrochimica Acta 41(10), 1633 (1996).

    Google Scholar 

  36. C. Schmitt, H. Pröbstle, and J. Fricke, J. Non-Cryst. Solids 285, 277 (2001).

    Google Scholar 

  37. F. Beck, F. Krüger, and B. Wermeckes, GDCH-Monographien 9, 119 (1997).

    Google Scholar 

  38. J.R. Park and D.D. McDonald, Corros. Sci. 23, 295 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pröbstle, H., Wiener, M. & Fricke, J. Carbon Aerogels for Electrochemical Double Layer Capacitors. Journal of Porous Materials 10, 213–222 (2003). https://doi.org/10.1023/B:JOPO.0000011381.74052.77

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPO.0000011381.74052.77

Navigation