Skip to main content
Log in

Absorbed heat and heat of formation of dried microbial biomassstudies on the thermodynamics of microbial growth

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

As represented by equations in which there is a term representing the biomass, the thermodynamics of biological growth processes is difficult to study without knowing the thermodynamic properties of cellular structural fabric. Measurement of the heat capacity data required to determine the standard entropy, Sº 298,15 or the standard absorbed heat, (H º 298,15 -ΔHº 0 =Θº 298,15 of biomass requires a low-temperature calorimter, and these are not present in most laboratories. Based on a previously described method for entropy, two equations are developed that enable values of the absorbed heat (Θº 298,15) and the absorbed heat of formation, (Δ f Θº 298,15) for biomass to be calculated empirically which are accurate to within 1% with respect to the biomass substances tested. These equations depend on a previous knowledge of the atomic composition or the unit-carbon formulas of macromolecules or structural cellular fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Kemp, J. Therm. Anal. Cal., 60 (2000) 831.

    Article  CAS  Google Scholar 

  2. P. Cardillo, J. Therm. Anal. Cal., 72 (2003) 7.

    Article  CAS  Google Scholar 

  3. E. H. Battley, Physiol. Plant., 13 (1960) 192.

    Article  CAS  Google Scholar 

  4. E. H. Battley, Energetics of Microbial Growth, Wiley, New York 1987, p. 450.

    Google Scholar 

  5. E. H. Battley, The Thermodynamics of Microbial Growth, Chapter 5, in Handbook of Thermoanalysis and Calorimetry, Vol. 4, R. B. Kemp, Ed., Elsevier Science, B. V., 1999. p. 237, but using formula (D) on p. 248, which eliminates the microquantities of Ca and Mg.

  6. E. Duclaux, Traité de Microbiologie, III, Masson et Cie., Paris 1900, p. 328.

    Google Scholar 

  7. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. K. Nuttall, J. Phys. Chem. Ref. Data 11 (1982) Supplement No. 2.

  8. I. M. Klotz and R. M. Rosenberg, Chemical Thermodynamics: Basic Theory and Methods, 6th Ed., Wiley, New York 2000, p. 145.

    Google Scholar 

  9. E. H. Battley, Thermochim. Acta, 331 (1999) 1.

    Article  CAS  Google Scholar 

  10. E. H. Battley and J. R. Stone, Thermochim. Acta, 360 (2000) 1.

    Article  CAS  Google Scholar 

  11. E. H. Battley and J. R. Stone, Thermochim. Acta, 349 (2000) 153.

    Article  CAS  Google Scholar 

  12. E. H. Battley, Thermochim. Acta, 394 (2002) 313.

    Article  CAS  Google Scholar 

  13. E. H. Battley, Thermochim. Acta, 326 (1999) 7.

    Article  CAS  Google Scholar 

  14. A. J. Kluyver and H. J. L. Donker, Chem. Zelle Gewebe, 13 (1926) 134.

    CAS  Google Scholar 

  15. J. D. Cox, D. D. Wagman and V. A. Medvedev, Eds, Codata Key Values for Thermodynamics, Hemisphere Publishing Corp., New York 1989.

    Google Scholar 

  16. J. O. Hutchens, A. G. Cole and J. W. Stout, J. Am. Chem. Soc., 82 (1960) 4813.

    Article  CAS  Google Scholar 

  17. J. O. Hutchens, A. G. Cole and J. W. Stout, J. Biol. Chem., 239 (1964) 4194.

    CAS  Google Scholar 

  18. J. O. Hutchens, A. G. Cole and J. W. Stout, J. Phys. Chem., 67 (1963) 1852.

    Google Scholar 

  19. J. O. Hutchens, A. G. Cole and J. W. Stout, J. Phys. Chem., 67 (1963) 1128.

    CAS  Google Scholar 

  20. J. O. Hutchens, A. G. Cole and J. W. Stout, J. Biol. Chem., 244 (1969) 33.

    CAS  Google Scholar 

  21. J. O. Hutchens, A. G. Cole, R. A. Robie and J. W. Stout, J. Biol. Chem., 238 (1963) 2407.

    CAS  Google Scholar 

  22. J. O. Hutchens, A. G. Cole and J. W. Stout, J. Biol. Chem., 239 (1964) 591.

    CAS  Google Scholar 

  23. H. E. Wirth, J. W. Droege and J. H. Wood, J. Phys. Chem., 60 (1956) 917.

    Article  CAS  Google Scholar 

  24. J. O. Hutchens, A. G. Cole and J. W. Stout, J. Biol. Chem., 244 (1969) 26.

    CAS  Google Scholar 

  25. E. H. Battley, Biotechnol. Bioeng., 37 (1991) 334.

    Article  CAS  Google Scholar 

  26. J. Boerio-Goates, Brigham Young University, Provo, Utah, USA, personal communication (2002), datum used with permission.

  27. E. H. Battley, R. L. Putnam and J. Boerio-Goates, Thermochim. Acta, 298 (1997) 37.

    Article  CAS  Google Scholar 

  28. I. Mills, T. Civitaš, K. Homann, N. Kallay and K. Kuchitsu, Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, London, 1993, for the International Union of Pure and Applied Chemistry. This is often called the 'Green Book'.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battley, E.H. Absorbed heat and heat of formation of dried microbial biomassstudies on the thermodynamics of microbial growth. Journal of Thermal Analysis and Calorimetry 74, 709–721 (2003). https://doi.org/10.1023/B:JTAN.0000011003.43875.0d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000011003.43875.0d

Navigation