Skip to main content
Log in

Crystallization and melting of isotactic polypropylene in response to temperature modulation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Isotactic polypropylene (iPP) was crystallized using temperature modulation in a differential scanning calorimeter (DSC) to thicken the crystals formed on cooling from the melt. A cool-heat modulation method was adopted for the preparation of the samples under a series of conditions. The effect of modulation parameters, such as temperature amplitude and period was monitored with the heating rate that followed. Thickening of the lamellae as a result of the crystallization treatment enabled by the cool-heat method lead to an increase in the peak melting temperature and the final traces of melting. For instance, iPP melting peak shifted by up to 3.5°C with temperature amplitude of 1.0°C while the crystallinity was increased from 0.45 (linearly cooled) to 0.53. Multiple melting endotherms were also observed in some cases, but this was sensitive to the temperature changes experienced on cooling. Even with a slower underlying cooling rate and small temperature amplitudes, some recrystallization and reorganization occurred during the subsequent heating scan. The crystallinity was increased significantly and this was attributed to the crystal perfection that occurred at the crystal growth surface. In addition, temperature modulated differential scanning calorimetry (TMDSC) has been used to study the melting of iPP for various crystallization treatments. The reversing and non-reversing contribution under the experimental time scale was modified by the relative crystal stability formed during crystallization. Much of the melting of iPP was found to be irreversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. D. Pae, J. Polym. Sci., 6 (1968) 657.

    Google Scholar 

  2. Y. S. Yadav and P. C. Jain, Polymer, 27 (1986) 721.

    Google Scholar 

  3. R. J. Samuels, J. Polym. Sci. Polym. Phys. Ed., 13 (1975) 1417.

    Google Scholar 

  4. Y. C. Kim, W. Ahn and C. Y. Kim, Polym. Eng. Sci., 37 (1997) 1003.

    Google Scholar 

  5. W. W. Cox and A. A. Duswalt, Polym. Eng. Sci., 7 (1967) 309.

    Google Scholar 

  6. J. G. Fatou, Eur. Polym. J., 7 (1971) 1057.

    Google Scholar 

  7. J. Varga and A. Menyhard, J. Therm. Anal. Cal., 73 (2003) 735.

    Google Scholar 

  8. P. B. Rim and J. P. Runt, Macromolecules, 16 (1983) 762.

    Google Scholar 

  9. P. D. Calvert and T. G. Ryan, Polymer, 25 (1984) 921.

    Google Scholar 

  10. R. Paukkeri and A. Lehtinen, Polymer, 34 (1993) 4083.

    Google Scholar 

  11. M. Reading, J. Therm. Anal. Cal., 64 (2001) 7.

    Google Scholar 

  12. R. Scherrenberg, V. Mathot and A. Van Hemelrijck, Thermochim. Acta, 330 (1999) 3.

    Google Scholar 

  13. S. Swier, G. Van Assche, A. Van Hemelrijck, H. Rahier, E. Verdonck and B. Van Mele, J. Therm. Anal. Cal., 54 (1998) 585.

    Google Scholar 

  14. P. S. Gill, S. R. Sauerbrunn and M. Reading, J. Thermal Anal., 40 (1993) 931.

    Google Scholar 

  15. A. Toda, C. Tomita and M. Hikosaka, J. Therm. Anal. Cal., 54 (1998) 623.

    Google Scholar 

  16. L. Judovits, J. D. Menczel and A. G. Leray, J. Therm. Anal. Cal., 54 (1998) 605.

    Google Scholar 

  17. J. E. K. Schawe, E. Bergmann and W. Winter, J. Therm. Anal. Cal., 54 (1998) 565.

    Google Scholar 

  18. A. Toda and Y. Saruyama, Polymer, 42 (2001) 4727.

    Google Scholar 

  19. W. Hu, T. Albrecht and G. Strobl, Macromolecules, 32 (1999) 7548.

    Google Scholar 

  20. R. Androsch, Polymer, 40 (1999) 2805.

    Google Scholar 

  21. R. Androsch and B. Wunderlich, Macromolecules, 32 (1999) 7238.

    Google Scholar 

  22. R. Androsch and B. Wunderlich, Macromolecules, 33 (2000) 9076.

    Google Scholar 

  23. M. Pyda, M. L. Di Lorenzo, J. Pak, P. Kamasa, A. Buzin, J. Grebowicz and B. Wunderlich, J. Polym. Sci: Part B: Polym. Phys., 39 (2001) 1565.

    Google Scholar 

  24. S. Montserrat, F. Roman and P. Colomer, J. Therm. Anal. Cal., 72 (2003) 657.

    Google Scholar 

  25. I. Okazaki and B. Wunderlich, Macromol. Rapid Commun., 18 (1997) 313.

    Google Scholar 

  26. I. Okazaki and B. Wunderlich, Macromolecules, 30 (1997) 1758.

    Google Scholar 

  27. M. Song, J. Appl. Polym. Sci., 81 (2001) 2779.

    Google Scholar 

  28. K. Ishikiriyama and B. Wunderlich, Macromolecules, 30 (1997) 4126.

    Google Scholar 

  29. X. Zhu and D. Yan, Macromol. Chem. Phys., 202 (2001) 1109.

    Google Scholar 

  30. R. P. Quirk and A. A. Alsamarraie, Physical Constants of Poly(propylene), in Polymer Handbook, J. Brandrup and E. H. Immergut, (Eds), Wiley, New York 1989, p. V/27.

    Google Scholar 

  31. K. Ishikiriyama and B. Wunderlich, J. Polym. Sci: Part B: Polym. Phys., 35 (1997) 1877.

    Google Scholar 

  32. Y. Long, R. A. Shanks and Z. H. Stachuski, Prog. Polym. Sci., 20 (1995) 651.

    Google Scholar 

  33. E.-Q. Chen, X. Weng, A. Zhang, I. Mann, F. W. Harris, S. Z. D. Cheng, R. Stein, B. S. Hsiao and F. Yeh, Macromol. Rapid Commun., 22 (2001) 611.

    Google Scholar 

  34. J. Xu, L. Feng, Z. Liu, Y. Deng, C. Cui and W. Chen, Polym. Int., 48 (1999) 53.

    Google Scholar 

  35. T. Liu, S. Yan, M. Bonnet, I. Lieberwirth, K.-D. Rogausch and J. Petermann, J. Mater. Sci., 35 (2000) 5047.

    Google Scholar 

  36. Z. Yuan, R. Song and D. Shen, Polym. Int., 49 (2000) 1377.

    Google Scholar 

  37. Y. Li, X. Zhu, G. Tian, D. Yan and E. Zhou, Polym. Int., 50 (2001) 677.

    Google Scholar 

  38. S. Tan, A. Su, W. Li and E. Zhou, J. Polym. Sci. Part B: Polym. Phys., 38 (2000) 53.

    Google Scholar 

  39. R. G. Alamo, R. H. Glaser and L. Mandelkern, J. Polym. Sci. Polym. Phys. Ed., 26 (1988) 2169.

    Google Scholar 

  40. J. D. Menczel, J. Therm. Anal. Cal., 58 (1999) 517.

    Google Scholar 

  41. R. Androsch, J. Polym. Sci: Part B: Polym. Phys., 39 (2001) 750.

    Google Scholar 

  42. B. B. Sauer, W. G. Kampert, E. N. Blanchard, S. A. Threefoot and B. S. Hsiao, Polymer, 41 (1999) 1099.

    Google Scholar 

  43. J. Schmidtke, G. Strobl and T. Albrecht, Macromolecules, 30 (1997) 5804.

    Google Scholar 

  44. R. Androsch and B. Wunderlich, Macromolecules, 34 (2001) 8384.

    Google Scholar 

  45. B. Wunderlich, Macromolecular Physics, Vol. 2, Academic Press, New York 1976.

    Google Scholar 

  46. R. Androsch and B. Wunderlich, Macromolecules, 34 (2001) 5950.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Shanks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genovese, A., Shanks, R.A. Crystallization and melting of isotactic polypropylene in response to temperature modulation. Journal of Thermal Analysis and Calorimetry 75, 233–248 (2004). https://doi.org/10.1023/B:JTAN.0000017345.31134.8d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000017345.31134.8d

Navigation