Skip to main content
Log in

Energy Preserving Time Integration for Constrained Multibody Systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper describes an energy preserving integration method for thedynamic analysis of nonlinear multibody systems in the presence ofnonlinear constraints. The aspects of finite rotation incrementation,discrete energy conservation and the most common constraint types areexamined in detail. The application is made to several rigid bodyexamples, including an intermittent contact problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauchau, O., ‘Computational schemes for flexible, nonlinear multi-body systems’, Multibody System Dynam. 2, 1998, 169–225.

    Google Scholar 

  2. Bauchau, O., ‘Flexible multibody systems with intermittent contacts’, Multibody System Dynam. 4, 2000, 23–54.

    Google Scholar 

  3. Bauchau, O. and Joo, T., ‘Computational schemes for nonlinear elasto-dynamics, Internat. J. Numer. Meth. Engrg. 45, 1999, 693–719.

    Google Scholar 

  4. Betsch, P. and Steinmann, P., ‘Conservation properties of a time FE method. Part I: Time-stepping schemes for N-body problems’, Internat. J. Numer. Meth. Engrg. 49, 2000, 599–638.

    Google Scholar 

  5. Betsch, P. and Steinmann, P., ‘Conservation properties of a time FE method. Part II: Time-stepping schemes for non-linear elastodynamics’, Internat. J. Numer. Meth. Engrg. 50, 2001, 1931–1955.

    Google Scholar 

  6. Betsch, P. and Steinmann, P., ‘Conservation properties of a time FE method. Part III: Mechanical systems with holonomic constraints, Internat. J. Numer. Meth. Engrg., to appear.

  7. Betsch, P. and Steinmann, P., ‘Constrained integration of rigid body dynamics’, Comput. Methods Appl. Mech. Engrg. 191, 2001, 467–488.

    Google Scholar 

  8. Cardona, A., ‘An integrated approach to mechanism analysis’, Ph.D. Thesis, Faculté des Sciences Appliquées, Université of Liège, 1989.

  9. Cardona, A. and Géradin, M., ‘Time integration of the equations of motion in mechanism analysis, Comput. & Structures Multibody 33, 1989, 801–820.

    Google Scholar 

  10. Chung, J. and Hulbert, G.M., ‘A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized α method’, J. Appl. Mech. 60, 1993, 371–375.

    Google Scholar 

  11. Géradin, M. and Cardona, A., Flexible Multibody Dynamics: A Finite Element Approach, John Wiley & Sons, New York, 2000.

    Google Scholar 

  12. Gonzalez, O., ‘Mechanical systems subject to holonomic constraints: Differential-algebraic formulations and conservative integration’, Physica D 132, 1999, 165–174.

    Google Scholar 

  13. Greenspan, D., ‘Conservative numerical methods for \(\ddot x = f(x)\)’, J. Comput. Phys. 56, 1984, 28–41.

    Google Scholar 

  14. Laursen, T.A. and Love, G.R., ‘Improved implicit integrators for transient impact problems — Geometric admissibility within the conserving framework, Internat. J. Numer. Meth. Engrg. 53, 2002, 245–274.

    Google Scholar 

  15. Puso, M., ‘An energy and momentum conserving method for rigid-flexible body dynamics’, Internat. J. Numer. Meth. Engrg. 53, 2002, 1393–1414.

    Google Scholar 

  16. Simo, J.C., Tarnow, N. and Wong, K.K., ‘Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics’, Comput. Methods Appl. Mech. Engrg. 100, 1992, 63–116.

    Google Scholar 

  17. Whittaker, E.T., Treatise on the Analytical Dynamics of Particles and Rigid Bodies, fourth edition, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lens, E.V., Cardona, A. & Géradin, M. Energy Preserving Time Integration for Constrained Multibody Systems. Multibody System Dynamics 11, 41–61 (2004). https://doi.org/10.1023/B:MUBO.0000014901.06757.bb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MUBO.0000014901.06757.bb

Navigation