Skip to main content
Log in

Continuous Thermogravimetry Under Cyclic Conditions

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Thermogravimetry during cyclic oxidation of metallic alloys is described. A methodology is given in order to determine the Net Mass Gain, the Gross Mass Gain, the total mass of spalled oxide, the rate of metal consumption and the average oxide scale thickness as a function of the number of cycles. The fraction of oxide scale which spalls at each cycle can be also calculated, and the parabolic constant can be estimated at each cycle. Two examples are given: the cyclic oxidation of a NiAl single crystal in flowing oxygen at 1150°C, and the cyclic oxidation of alloy P91 at 800°C in laboratory air. Advantages and disadvantages of this technique are discussed in regards to classical interrupted tests in crucibles. Thermogravimetry during cyclic oxidation appears to be a powerful tool in order to model and quantify the cyclic oxidation test which is of great interest in order to qualify the resistance of materials to oxidation in conditions close to their actual use, but a specific aspparatus need to be developed in order to obtain data in an efficient and economical manner. A new apparatus designed for this purpose is described briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Rosa, M.-H. Nadal, and R. Oltra, Journal of Applied Physics 91, 6744(2002).

    Google Scholar 

  2. G. Rosa, P. Psyllaki, R. Oltra, S. Costil, and C. Coddet, Ultrasonics 39, 355(2001).

    Google Scholar 

  3. J. Mougin, M. Dupeux, A. Galerie, and L. Antoni, Materials Science and Technology 18, 1217(2002).

    Google Scholar 

  4. H. E. Evans, and R. C. Lobb, Corrosion Science 24, 209(1984).

    Google Scholar 

  5. K. Bouhanek, D. Oquab, and B. Pieraggi, Materials Science Forum 251–254, 33(1997).

    Google Scholar 

  6. M. Schütze, and W. J. Quaddakkers, eds. The European Federation of Corrosion, 1999.

  7. H. E. Evans, Materials at High Temperatures 12, 219(1994).

    Google Scholar 

  8. M. Schütze, Oxidation of Metals 44, 29–61(1995).

    Google Scholar 

  9. J. L. Smialek, Metallurgical and Materials Transactions A 9A, 309(1978).

    Google Scholar 

  10. C. E. Lowell, C. A. Barrett, R. W. Palmer, J. V. Auping, and H. B. Probst, Oxidation of Metals 36, 81(1991).

    Google Scholar 

  11. D. Poquillon, and D. Monceau, Oxidation of Metals 59, 409(2003).

    Google Scholar 

  12. H. J. Grabke, and D. B. Meadowcroft, eds. The European Federation of Corrosion, 1995.

  13. J. R. Nicholls, and M. J. Bennett, Cyclic oxidation of high temperature materials, M. Schütze, and W. J. Quadakkers, eds. (IOM Communications Ltd, London, 1999), Vol. EFC 27, 437.

    Google Scholar 

  14. J. Smialek, J. A. Nesbitt, C. A. Barrett, and C. E. Lowell, Cyclic oxidation of high temperature materials, M. Schütze, and W. J. Quadakkers, eds. (IOM Communications Ltd, London, 1999), Vol. EFC 27, 148.

    Google Scholar 

  15. B. A. Pint, P. F. Tortorelli, and I. G. Wright, Cyclic oxidation of high temperature materials, M. Schütze, and W. J. Quadakkers, eds. (IOM Communications Ltd, London, 1999), Vol. EFC 27, 111.

    Google Scholar 

  16. P. Moulin, PhD thesis (Paris Sud, Orsay, 1978), 91.

  17. J. C. Pivin, D. Delaunay, C. Roques-Carmes, A. M. Huntz, and P. Lacombe, Corrosion Science 20, 351(1980).

    Google Scholar 

  18. S. Y. Chang, U. Krupp, and H. J. Christ, Cyclic oxidation of high temperature materials, M. Schütze, and W. J. Quadakkers, eds. (IOM Communications Ltd, London, 1999), Vol. EFC 27, 63.

    Google Scholar 

  19. U. Krupp, S. Y. Chang, A. Schimke, and H. J. Christ, Lifetime modelling of high temperature corrosion processes, M. Schütze, W. J. Quadakkers, and J. R. Nicholls, eds. (Maney Publishing, London, 2001), Vol. EFC 34, 148.

    Google Scholar 

  20. P. Vangeli, and B. Ivarsson, Materials Science Forum 369–372, 785(2001).

    Google Scholar 

  21. P. Vangeli, Cyclic oxidation of high temperature materials, M. Schütze, and W. J. Quadakkers, eds. (IOM Communications Ltd, London, 1999), Vol. EFC 27, 198.

    Google Scholar 

  22. J.-C. Salabura, and D. Monceau, Materials Science Forum, paper accepted (2004).

  23. D. Poquillon, D. Oquab, B. Viguier, F. Senocq, and D. Monceau, Materials Science and Engineering A, submitted (2003).

  24. D. Monceau, communication at COTEST meeting, Madrid, February (2003).

  25. R. Newton, M. J. Bennet, J. P. Wilber, J. R. Nicholls, D. Naumenko, W. J. Quadakkers, H. Al-Badairy, G. J. Tatlock, G. Strehl, G. Borchardt, A. Kolb-Telieps, B. Jonsson, A. Westerlund, V. Guttmann, M. Maier, and P. Beaven, Lifetime modelling of high temperature corrosion processes, M. Schütze, W. J. Quadakkers, and J. R. Nicholls, eds. (Maney publishing, Franckfurt, 2001), Vol. European Federation of Corrosion Publications 34, 15.

    Google Scholar 

  26. J. R. Nicholls, R. Newton, M. J. Bennet, H. E. Evans, H. Al-Badairy, G. J. Tatlock, D. Naumenko, W. J. Quadakkers, G. Strehl, and G. Borchardt, Lifetime Modelling of High Temperature Corrosion Processes, M. Schütze, W. J. Quadakkers, and J. R. Nicholls, eds. (Maney publishing, Franckfurt, 2001), Vol. European Federation of Corrosion Publications 34, 83.

    Google Scholar 

  27. D. Monceau, and B. Pieraggi, Oxidation of Metals 50, 477(1998).

    Google Scholar 

  28. H. Coradin, R. Peraldi, J. Lacaze, and D. Monceau, poster at “Jeunes chercheurs”, Montpellier (1998).

  29. D. Monceau, communication in Journées d'Automne de la Société Française de Métallurgie et de Matériaux SF2M (Paris, 2000).

  30. K. Bouhanek, D. Oquab, and B. Pieraggi, High Temperature Corrosion and Protection of Materials, Materials Science Forum 251–254, 33(1997).

    Google Scholar 

  31. H. E. Evans, International materials reviews 40, 1(1995).

    Google Scholar 

  32. W. J. Quadakkers, and K. Bongartz, Mater. Corros. 45, 232(1994).

    Google Scholar 

  33. I. Gurupa, S. Weinbruch, D. Naumenko, and W. J. Quadakkers, Mater. Corros. 51, 224(2000).

    Google Scholar 

  34. J. R. Nicholls, R. Newton, M. J. Bennett, H. E. Evans, H. Al-Badairy, G. J. Tatlock, D. Naumenko, W. J. Quadakkers, G. Strehl, and G. Borchardt, Lifetime modelling of high temperature corrosion processes, M. Schütze, W. J. Quadakkers, and J. R. Nicholls, eds. (Maney Publishing, London, 2001), Vol. EFC 34, 83.

    Google Scholar 

  35. J. S. Smialek, and J. V. Auping, Oxidation of Metals 57, 559(2002).

    Google Scholar 

  36. D. Poquillon and D. Monceau, in TMS Annual Meeting (Peter K. Liaw, Raymond A. Buchanan, Dwaine L. Klarstrom, Robert P. Wei, D. Gary Harlow, and Peter F. Tortorelli, eds. (TMS, San Diego, 2003), Vol. Materials Lifetime Science Engineering, 165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monceau, D., Poquillon, D. Continuous Thermogravimetry Under Cyclic Conditions. Oxidation of Metals 61, 143–163 (2004). https://doi.org/10.1023/B:OXID.0000016281.25965.93

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OXID.0000016281.25965.93

Navigation