Skip to main content
Log in

Cyclic-Oxidation Resistance of Niobium-Base in situ Composites: Modeling and Experimentation

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Despite significant improvements in recent years, the oxidation resistance of niobium-base in situ composites is still inadequate for high-temperature applications because of their fast oxidation and the difficulty to form a coherent, protective-oxide layer on the Nb solid solution. Recently, several oxidation models have been proposed in the literature for treating the oxidation behavior of two-phase materials, which show features that are applicable to niobium-base in situ composites. In this article, the theoretical oxidation model proposed by Gesmundo et al. [Oxidation of Metals 39, 1977–209 (1993)] for treating independent isothermal oxidation of two-phase binary alloys has been extended to cyclic oxidation and applied to analyze existing oxidation data of niobium-base in situ composites. The critical conditions required to form a protective-oxide layer on Nb-base in situ composites is predicted via existing models proposed by Wang et al. [Oxidation of Metals 35, 317–322, 333–348 (1991)]. The analytical results are then used to identify possible means for improving the oxidation properties of the Nb-base in situ composites. Key conditions required for achieving a continuous protective oxide are predicted and compared against critical experiments performed on Nb-base in situ composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. W. Semmel, Jr., in Refractory Metals and Alloys, AIME Metallurgical Society Conferences, M. Semchyshen, and J. J. Hardwood, eds. (Interscience Publishers, New York, 1960), Vol. 11, pp. 119-168.

    Google Scholar 

  2. A. B. Michael, in Reactive Metals, AIME Metallurgical Society Conferences, W. R. Clough, ed. (Interscience Publishers, New York, 1958), Vol. 2, pp. 487-507.

    Google Scholar 

  3. G. T. J. Mayo, W. H. Shepherd, and A. G. Thomas, Journal of the Less-Common Metals 2, 223-232 (1960).

    Google Scholar 

  4. H. Inouye, in Columbian Metallurgy, AIME Metallurgical Society Conferences, D. L. Douglass, and F. W. Kunz, eds. (Interscience Publishers, New York, 1960), Vol. 10, pp. 649-665.

    Google Scholar 

  5. S. T. Wlodek, in Columbian Metallurgy, AIME Metallurgical Society Conferences, D. L. Douglass, and F. W. Kunz, eds. (Interscience Publishers, New York, 1960), Vol. 10pp. 553-583.

    Google Scholar 

  6. S. T. Wlodek, in Columbian Metallurgy, AIME Metallurgical Society Conferences, D. L. Douglass, and F. W. Kunz, eds. (Interscience Publishers, New York, 1960), Vol. 10, pp. 175-203.

    Google Scholar 

  7. R. E. Pawel, J. V. Cathcart, and J. J. Campbell, in Columbian Metallurgy, AIME Metallurgical Society Conferences, D. L. Douglass, and F. W. Kunz, eds. (Interscience Publishers, New York, 1960), Vol. 10, pp. 667-684.

    Google Scholar 

  8. P. Lublin, W. J. Sutkowski, E. Rittershaus, and J. Brett, in Refactory Metals and Alloys IV Research and Development—Vol. II, AIME Metallurgical Society Conferences, R. I. Jaffee, G. M. Ault, J. Maltz, and M. Semchyshen, eds. (Gordon and Breach Science Publishers, New York, 1965), Vol. 41, pp. 1083-1105.

    Google Scholar 

  9. J. D. Cox, and J. R. Kerr, in Refractory Metals and Alloys IV Research and Development, R. I. Jaffee, G. M. Ault, J. Maltz, and M. Semchyshen, eds. (Gordon and Breach Science Publishers, New York, 1965), Vol. 41, pp. 901-917.

    Google Scholar 

  10. J. F. Stringer, High-Temperature Corrosion of Aerospace Alloys, (AGARD-AG-200, Advisory Group for Aerospace Research and Development, NATO, August 1975).

  11. H. Inoye, in Proceedings of the International Symposium on Niobium, H. Stuart, ed. (TMS, Warrendale, 1984), pp. 615-636.

    Google Scholar 

  12. R. T. Begley, in Evolution of Refractory Metals and Alloys, E. N. C. Dalder, T. Grobstein, and C. S. Olsen, eds. (TMS, Warrendale, 1994), pp. 29-48.

    Google Scholar 

  13. R. A. Perkins, and G. H. Meier, Journal of Metals 42, 17-21 (1990).

    Google Scholar 

  14. R. C. Svedberg, in Proceedings of the Symposium on Properties of High Temperature Alloys, Z. A. Foroulis, and F. S. Pettit, eds. (The Electrochemical Society, Princeton, 1976), pp. 331-362.

    Google Scholar 

  15. R. A. Perkins, K. T. Chiang, and G. H. Meier, Scripta Metallurgica et Materialia. 22, 419-424, (1988).

    Google Scholar 

  16. R. A. Perkins, K. T. Chiang, G. H. Meier, and R. Miller, in Oxidation of High Temperature Intermetallics, T. Grobstein, and J. Doychak, eds. (TMS, Warrendale, 1988), pp. 157-169.

    Google Scholar 

  17. J. S. Lee, J. J. Stephens, and T. G. Nieh, in High-Temperature Niobium Alloys, J. J. Stephens, and I. Amad, eds. (TMS, Warrendale, 1991), pp. 143-155.

    Google Scholar 

  18. R. A. Perkins, and G. H. Meier, Microscopy of Oxidation (Institute of Metals, London, 1991), pp. 183-192.

    Google Scholar 

  19. G. H. Meier, Materials and Corrosion 47, 595-618 (1996).

    Google Scholar 

  20. R. L. Fleischer, and R. J. Zabala, Metallurgical Transactions A 21A, 2149-2154 (1990).

    Google Scholar 

  21. D. L. Anton, and D. M. Shah, MRS Symposium Proceedings 194, 175-182 (1990).

    Google Scholar 

  22. M. R. Jackson, K. D. Jones, S. C. Huang, and L. A. Peluso, in Refractory Metals: Extrusion, Processing and Applications, K. C. Liddell, D. R. Sadoway, and R. G. Bustista, eds. (TMS, Warrendale, 1990), pp. 335-346.

    Google Scholar 

  23. D. M. Dimiduk, M. G. Mendiratta, and P. R. Subramanian, in Structural Intermetallics, R. Darolia, J. J. Lewndowski, C. T. Liu, P. L. Martin, D. B. Mieracle, and M. V. Nathal, eds. (TMS, Warrendale, 1993), pp. 619-630.

    Google Scholar 

  24. B. P. Bewlay, H. A. Lipsitt, W. J. Reeder, M. R. Jackson, and J. A. Sutliff, in Processing and Fabrication of Advanced Materials IV, V. A. Ravi, T. S. Srivatsan, and J. J. Moore, eds. (TMS, Warrendale, 1994), pp. 547-565.

    Google Scholar 

  25. M. R. Jackson, R. G. Rowe, and D. W. Skelly, Materials Research Society of Symposium Proceedings 364, 1339-1344 (1995).

    Google Scholar 

  26. P. R. Subramanian, M. G. Mendiratta, and D. M. Dimiduk, Journal of Metals 48, 33-38 (1996).

    Google Scholar 

  27. P. R. Subramanian, M. G. Mendiratta, D. M. Dimiduk, and M. A. Stucke, Materials Science Engineering 239–340, 1-13 (1997).

    Google Scholar 

  28. M. R. Jackson, B. P. Bewlay, R. G. Rowe, D. W. Skelly, and H. A. Lipsitt, Journal of Metals 48, 39-44 (1996).

    Google Scholar 

  29. B. P. Bewlay, M. R. Jackson, and H. A. Lipsitt, Metallurgical Materials Transactions A, 27A, 3801-3808 (1996).

    Google Scholar 

  30. P. R. Subramanian, M. G. Mendiratta, and D. M. Dimiduk, Materials Research Society of Symposium Proceedings 322, 491-502 (1994).

    Google Scholar 

  31. B. P. Bewlay, M. R. Jackson, W. J. Reeder, and H. A. Lipsitt, Materials Research Society of Symposium Proceedings 364, 943-948 (1995).

    Google Scholar 

  32. H. A. Lipsitt, M. J. Blackburn, and D. M. Dimiduk, in Intermetallic Compounds—Principles and Practice, J. H. Westbrook, and R. L. Fleischer, eds. (John Wiley & Sons, New York, 2002), Vol. 3(23), pp. 471-499.

    Google Scholar 

  33. B. P. Bewlay, and M. R. Jackson, in Comprehensive Composite Materials, A. Kelly, and C. Zweben, eds. (Elsevier, 2000), Vol. 3(22), pp. 579-613.

  34. E. S. K. Menon, M. G. Mediratta, and D. M. Dimiduk, in Structural Intermetallics 2001, K. J. Hemker, D. M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J. M. Larsen, V. K. Sikka, M. Thomas, and J. D. Whittenberger, eds. (TMS, Warrendale, 2001), pp. 591-600.

    Google Scholar 

  35. K. S. Chan, Metallurgical and Materials Transactions. A, 35A, 589-597 (2004).

    Google Scholar 

  36. F. H. Stott, G. C. Wood and J., Stringer, Oxidation of Metals 44, 113-145 (1995).

    Google Scholar 

  37. G. Wang, B. Gleeson, and D. L. Douglass, Oxidation of Metals 35, 317-322 (1991).

    Google Scholar 

  38. G. Wang, B. Gleeson, and D. L. Douglass, Oxidation of Metals 35, 333-348 (1991).

    Google Scholar 

  39. F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass, Oxidation of Metals 39, 197-209 (1993).

    Google Scholar 

  40. F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass, Oxidation of Metals 40, 373-393 (1993).

    Google Scholar 

  41. F. Gesmundo, F. Viani, and Y. Niu, Oxidation of Metals 42, 285-301 (1994).

    Google Scholar 

  42. F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass, Oxidation of Metals 42, 465-483 (1994).

    Google Scholar 

  43. F. Gesmundo, and B. Gleeson, Oxidation of Metals 44, 211-237 (1995).

    Google Scholar 

  44. F. Gesmundo, F. Viani, and Y. Niu, Oxidation of Metals 42, 409-429 (1994).

    Google Scholar 

  45. F. Gesmundo, P. Castello, and F. Viani, Oxidation of Metals 46, 383-398 (1996).

    Google Scholar 

  46. K. S. Chan, Metallurgical and Materials Transactions A 28A, 422(1997).

    Google Scholar 

  47. C. Wagner, Zeitschrift Fur Elektrochemie 63, 772(1959).

    Google Scholar 

  48. G. Wahl, Thin Solid Films 107, 417-426 (1983).

    Google Scholar 

  49. W. D. Kloop, D. J. Waykuth, C. T. Sims, and R. I. Jaffee, Oxidation and Contamination Reactions of Niobium and Niobium Alloys, Battelle Memorial Institute Report No. 1317 (1959).

  50. S. K. Rhee, and A. R. Spencer, Metallurgical Transactions A, 1, 2021-2022 (1970).

    Google Scholar 

  51. B. Gleeson, and M. A. Harper, Oxidation of Metals 49, 373-399 (1998).

    Google Scholar 

  52. C. E. Remsberg, P. Beatrice, K. Kurokawa, and W. L. Worrell, Materials Research Society of Symposium Proceedings 322, 243-253 (1994).

    Google Scholar 

  53. J. G. L. Ruiz-Aparicio, and F. Ebrahimi, Journal of Alloys and Compounds, 202(12), 117-123 (1993).

    Google Scholar 

  54. M. Zhang, W. Yu, W. H. Wang, and W. K. Wang, Thin Solid Films 287, 293-296 (1996).

    Google Scholar 

  55. Z. Bochníček, and I. Vávra, Materials Letter 45, 120-124 (2000).

    Google Scholar 

  56. ASTM E1085-87 Annual Book of ASTM Standards (ASTM, Philadelphia, 1995) Vol. 3(6).

  57. K. S. Chan, and D. L. Davidson, Metallurgical and Materials Transactions. A 34A, 1833-1849 (2003).

    Google Scholar 

  58. Joint Committee on Powder Diffraction Files, International Center for Diffraction Data, Swarthmore, PA, (1992).

  59. K. S. Chan, N. S. Cheruvu, and G. R. Leverant, Journal of Engineering for Gas Turbines and Power 121, 484-488 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S. Cyclic-Oxidation Resistance of Niobium-Base in situ Composites: Modeling and Experimentation. Oxidation of Metals 61, 165–194 (2004). https://doi.org/10.1023/B:OXID.0000025330.65837.d1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OXID.0000025330.65837.d1

Navigation