Skip to main content
Log in

Effect of Cr and Ni Contents on the Oxidation Behavior of Ferritic and Austenitic Model Alloys in Air with Water Vapor

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Ferritic and austenitic model alloys with various contents of Cr and Ni ranging between 10–20% and 0–30%, respectively, were oxidized in air + 10% water vapor during 1 hr cyclic oxidation at 650°C and 800°C. Depending on the alloy composition and temperature, either a thin protective oxide scale was observed or accelerated attack occurred which sometimes included spallation. For austenitic model alloys, increasing either the Cr or Ni contents delayed the accelerated attack. For lower Cr and Ni contents at 800°C, accelerated attack, including spallation, occurred at short exposure times. No spallation was observed for the ferritic model alloys. However, accelerated attack can occur quickly with low Cr contents. Increasing the temperature delayed the breakaway observed on ferritic alloys whereas it reduced the protective-oxide-growth stage for austenitic alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kofstad, “High Temperature Corrosion” (Elsevier Applied Science, London, 1988).

    Google Scholar 

  2. J. M. Rakowski, and B. Pint, Corrosion 517, 1-9 (2000).

    Google Scholar 

  3. S. Henry, A. Galerie, and L. Antoni, Materials Science Forum 369–;372, 353-360 (2001).

    Google Scholar 

  4. B. Pint, and J. M. Rakowski, Corrosion 259, 1-14 (2000).

    Google Scholar 

  5. N. Otsuka, Y. Shida, and H. Fujikawa, Oxidation of Metals 32(1/2), 13-45 (1989).

    Google Scholar 

  6. C. Piehl, Z. Tôkei, and H. J. Grabke, Materials Science Forum 369–;372, 319-326 (2001).

    Google Scholar 

  7. H. Asteman, K. Segerdahl, J.-E. Svensson, and L.-G. Johansson, Materials Science Forum 369–;372, 277-286 (2001).

    Google Scholar 

  8. I. Saeki, H. Konno, and R. Furuichi, Corrosion Science 38(1), 19-31 (1996).

    Google Scholar 

  9. I. Saeki, H. Konno, R. Furuichi, T. Nakamura, K. Mabuchi, and M. Itoh, Corrosion Science 40(2/3), 191-200 (1998).

    Google Scholar 

  10. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, Oxidation of Metals 37(1/2), 81-93 (1992).

    Google Scholar 

  11. H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Norell, Oxidation of Metals 52(1/2), 95-111 (1999).

    Google Scholar 

  12. H. Asteman, J.-E. Svensson, M. Norell, and L.-G. Johansson, Oxidation of Metals 54(1/2), 11-26 (2000).

    Google Scholar 

  13. L. Tomlinson and N. J. Cory, Corrosion Science 29(8), 939-965 (1989).

    Google Scholar 

  14. K. Honda, T. Maruyama, T. Atake, and Y. Saito, Oxidation of Metals 38(5/6), 347-363 (1992).

    Google Scholar 

  15. I. Kvernes, M. Oliveira, and P. Kofstad, Corrosion Science 17, 237-252 (1977).

    Google Scholar 

  16. V. V. Silberschmidt, and E. Werner, Computational Materials Science 16, 39-52 (1999).

    Google Scholar 

  17. R. Peraldi, and B. A. Pint, Oxidation of Metals, in preparation.

  18. H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Oxidation of Metals 52(5/6), 379-402 (1999).

    Google Scholar 

  19. Zs. Tökei, H. Viefhaus, and H.J. Grabke, Materials Science Technology 16, 1129-1138 (2000).

    Google Scholar 

  20. A. Galerie, Y. Wouters, and M. Caillet, Materials Science Forum 369–;372, 231-238 (2001).

    Google Scholar 

  21. A. Holt, and P. Kofstad, Solid State Ionics 69, 137-143 (1994).

    Google Scholar 

  22. G. Hultquist, B. Tveten, and E. Hörnlund, Oxidation of Metals 54(1/2), 1-10 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peraldi, R., Pint, B.A. Effect of Cr and Ni Contents on the Oxidation Behavior of Ferritic and Austenitic Model Alloys in Air with Water Vapor. Oxidation of Metals 61, 463–483 (2004). https://doi.org/10.1023/B:OXID.0000032334.75463.da

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OXID.0000032334.75463.da

Navigation