Skip to main content
Log in

Aerobic Phototrophic Bacteria: New Evidence for the Diversity, Ecological Importance and Applied Potential of this Previously Overlooked Group

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The aerobic phototrophic bacteria are a recently discovered group capable of producing a photosynthetic apparatus similar to that of purple phototrophic bacteria. However, this apparatus, in contrast to that of their anaerobic counterparts, is functional in terms of photoinduced electron transport only under aerobic conditions. Although these bacteria have been widely studied, little is yet known about their ecological importance, and why they differ from other anoxygenic phototrophs with respect to oxygen requirements. In recent years a large number of new genera and species have been described from a wide variety of habitats, and evidence has been presented to support their important ecological role. This minireview focuses on recent discoveries regarding taxonomy, ecology and physiology, as well as the latest advances in the understanding of their photosynthetic apparatus and its genetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alarico S, Rainey FA, Empadinhas N, Schumann P, Nobre MF and Da Costa MS (2002) Rubritepida flocculans gen. nov., sp. nov., a new slightly thermophilic member of the α-1 subclass of the Proteobacteria. Syst Appl Microbiol 25: 198–206

    Google Scholar 

  • Bauer CE, Buggy J and Mosley C (1993) Control of photosystem genes in Rhodobacter capsulatus. Trends Genet Rev 9: 56–60

    Google Scholar 

  • Beatty JT (2002) On the natural selection and evolution of the aerobic phototrophic bacteria. Photosynth Res 73: 109–114

    Google Scholar 

  • Beja O, Suzuki MT, Heldelberg JF, Nelson WC, Preston CM, Hamada T, Elsen JA, Fraser CM and DeLong EF (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415: 630–633

    Google Scholar 

  • Boettcher KJ, Barber BJ and Singer JT (2000) Additional evidence that juvenile oyster disease is caused by a member of the Roseobacter group and colonization of nonaffected animals by Stappia stellulata-like strains. Appl Environ Microbiol 66: 3924–3930

    Google Scholar 

  • Buchan A, Collier LS, Neidle EL and Moran MA (2000) Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Appl Environ Microbiol 66: 4662–4672

    Google Scholar 

  • Candela M, Zaccherini E and Zannoni D (2001) Respiratory electron transport and light-induced energy transduction in membranes from the aerobic photosynthetic bacterium Roseobacter denitrificans. Arch Microbiol 175: 168–177

    Google Scholar 

  • Denner EBM, Vybiral D, Koblizek M, Kampfer P, Busse H and Velimirov B (2002) Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 52: 1655–1661

    Google Scholar 

  • Fischer J, Quentmeier A, Gansel S and Sabados VFCG (2002) Inducible aluminum resistance of Acidiphilium cryptum and aluminum tolerance of other acidophilic bacteria. Arch Microbiol 178: 554–558

    Google Scholar 

  • Fleischman D and Kramer D (1998) Photosynthetic rhizobia. Biochim Biophys Acta 1364: 17–36

    Google Scholar 

  • Garcia D, Richaud P, Breton J and Vermeglio A (1994) Structure and function of the tetraheme cytochrome associated to the reaction center of Roseobacter denitrificans. Biochimie 76: 666–673

    Google Scholar 

  • Gest H (1993) Photosynthetic and quasi-photosynthetic bacteria. FEMS Microbiol Lett 112: 1–6

    Google Scholar 

  • Goericke R (2002) Bacteriochlorophyll a in the ocean: is anoxygenic bacterial photosynthesis important? Limnol Oceanog 47: 290–295

    Google Scholar 

  • Gram L, Grossart H, Schlingloff A and Kiorboe T (2002) Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl Environ Microbiol 68: 4111–4116

    Google Scholar 

  • Gregor J and Klug G (1999) Regulation of bacterial photosynthesis genes by oxygen and light. FEMS Microbiol Lett 179: 1–9

    Google Scholar 

  • Grigioni S, Boucher-Rodoni R, Demarta A Tonolla M and Peduzzi R (2000) Phylogenetic characterisation of bacterial symbionts in the accessory nidamental glands of the sepioid Sepia officinalis (Cephalopoda: Decapoda). Mar Biol 136: 217–222

    Google Scholar 

  • Harashima K, Nakagava M and Murata N (1982) Photochemical activity of bacteriochlorophyll in aerobically grown cells of heterotrophs, Erythrobacter species (OCh114) and Erythrobacter longus (OCh101). Plant Cell Phys 23: 185–193

    Google Scholar 

  • Hiraishi A and Shimada K (2001) Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol 47: 161–180

    Google Scholar 

  • Hiraishi A, Matsuzawa Y, Kanbe T and Wakao N (2000) Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. Int J Syst Evol Microbiol 50: 1539–1546

    Google Scholar 

  • Hiraishi A, Yonemitsu Y, Matsushita M, Shin YK, Kuraishi H and Kawahara K (2002) Characterization of Porphyrobacter sanguineus sp. nov., an aerobic bacteriochlorophyll-containing bacterium capable of degrading biphenyl and dibenzofuran. Arch Microbiol 178: 45–52

    Google Scholar 

  • Jannasch HW and Jones GE (1959) Bacterial populations in sea water as determined by different methods of enumeration. Limnol Oceanog 4: 128–139

    Google Scholar 

  • Jones BE, Grant WD, Duckworth AW and Avenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2: 191–200

    Google Scholar 

  • Kobayashi M, Akiyama M, Yamamura M, Kise H, Takaichi S, Watanabe T, Shimada K, Iwaki M, Itoh S, Ishida N, Koizumi M, Kano H, Wakao N and Hiraishi A (1998) Structural determination of the novel Zn-containing bacteriochlorophyll in Acidiphilium rubrum. Photomed Photobiol 20: 75–80

    Google Scholar 

  • Kolber ZS, Prasil O and Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367: 88–106

    Google Scholar 

  • Kolber ZS, Van Dover CL, Niederman RA and Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407: 177–179

    Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C and Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292: 2492–2495

    Google Scholar 

  • Labrenz M, Collins MD, Lawson PA, Tindall BJ, Schumann P and Hirsch P (1999) Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Evol Microbiol 49: 137–147

    Google Scholar 

  • Labrenz M, Tindall BJ, Lawson PA, Collins MDSP and Hirsch P (2000) Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50: 303–313

    Google Scholar 

  • Lafay B, Ruimy R, Rauch de Traubenberg C, Breitmayer V, Gauthier M J and Christen R (1995) Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflaggellata Prorocentum lima. Int J Syst Bacteriol 45: 290–296

    Google Scholar 

  • Madigan MT, Martinko JM and Parker J (2003) Brock Biology of Microorganisms. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Mahapatra NR, Ghosh S, Deb C and Banerjee PC (2002) Resistance to cadmium and zinc in Acidiphilium symbioticum KM2 is plasmid mediated. Current Microbiol 45: 180–186

    Google Scholar 

  • Masuda S and Bauer CE (2002) AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110: 613–623

    Google Scholar 

  • Masuda S, Matsumoto Y, Nagashima KVP, Shimada K, Inoue K, Bauer CE and Matsuura K (1999) Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans and Rhodobacter capsulatus. J Bacteriol 181: 4205–4215

    Google Scholar 

  • Matsuda Y, Inamori K, Osaki T, Eguchi A, Watanabe A, Kawabata S, Iba K and Arata H (2002) Nitric oxide-reductase homologue that contains a copper atom and has cytochrome c-oxidase activity from an aerobic phototrophic bacterium Roseobacter denitrificans. J Biochem 131: 791–800

    Google Scholar 

  • Mullins TD, Britschgi TB, Krest RL and Giovannoni SJ (1995) Genetic comparisons reveal the same unknown lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanog 40: 148–158

    Google Scholar 

  • Nagashima KVP, Shimada K and Matsuura K (1993) Phylogenetic analysis of photosynthetic genes of Rhodocyclus gelatinosis: possibility of horizontal gene transfer in purple bacteria. Photosynth Res 36: 185–191

    Google Scholar 

  • Nagashima KVP, Hiraishi A, Shimada K and Matsuura K (1997) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45: 131–136

    Google Scholar 

  • Neumann U, Maier E, Schiltz E, Weckesser J and Benz R (1997) Characterization of porin from Roseobacter denitrificans. Antonie van Leeuwenhoek 72: 135–140

    Google Scholar 

  • Nishimura Y, Muroga Y, Saito S, Shiba T, Takamiya K and Shioi Y (1994) DNA relatedness and chemotaxonomic feature of aerobic bacteriochlorophyll-containing bacteria isolated from coasts of Australia. J Gen Appl Microbiol 40: 287–296

    Google Scholar 

  • Nishimura K, Shimada H, Shinmen T, Obayashi T, Masuda T, Ohta H and Takamiya K (1999) Photosynthetic regulatory gene cluster in an aerobic photosynthetic bacterium, Roseobacter denitrificans. J Gen Appl Microbiol 45: 129–143

    Google Scholar 

  • Oh JI and Kaplan S (2001) Generalized approach to the regulation and integration of gene expression. Mol Microbiol 39: 1116–1123

    Google Scholar 

  • Okamura K, Takamiya K and Nishimura M (1985) Photosynthetic electron transfer system is inoperative in anaerobic cells of Erythrobacter species strain OCh114. Arch Microbiol 142: 12–17

    Google Scholar 

  • Ormerod J (2003) ‘Every dogma has its day’: a personal look at carbon metabolism in photosynthetic bacteria. Photosynth Res 76: 135–143

    Google Scholar 

  • Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In: Clayton R and Sistrom W (eds) The Photosynthetic Bacteria, pp 3–18. Plenum Press, New York

    Google Scholar 

  • Rainey FA, Silva J, Nobre MF, Silva MT and da Costa MS (2003) Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Int J Syst Evol Microbiol 53: 35–41

    Google Scholar 

  • Rohwer F, Segall A, Steward G, Seguritan V, Breitbart M, Wolven F and Azam F (2000) The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol Oceanog 45: 408–418

    Google Scholar 

  • Ruiz-Ponte C, Cilia VLC and Nicolas JL (1998) Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. Int J Syst Evol Microbiol 48: 537–542

    Google Scholar 

  • Ruiz-Ponte C, Samain JF, Sanchez JL and Nicolas JL (1999) The benefit of a Roseobacter species on the survival of scallop larvae. Marine Biotech 1: 52–59

    Google Scholar 

  • Saitoh S, Suzuki T and Nishimura Y (1998) Proposal of Craurococcus roseus gen. nov., sp. nov. and Paracraurococcus ruber gen. nov., sp. nov., novel aerobic bacteriochlorophyll a-containing bacteria from soil. Int J Syst Evol Microbiol 48: 1043–1047

    Google Scholar 

  • Schwarze C, Carluccio AV, Venturoli G and Labahn A (2000) Photo-induced cyclic electron transfer involving cytochrome bc 1 complex and reaction center in the obligate aerobic phototroph Roseobacter denitrificans. Europ J Biochem 267: 422–433

    Google Scholar 

  • Shiba T (1984) Utilization of light energy by the strictly aerobic bacterium Erythrobacter sp. OCh114. J Gen Appl Microbiol 30: 239–244

    Google Scholar 

  • Shiba T (1987) O2 regulation of bacteriochlorophyll synthesis in the aerobic bacterium Erythrobacter. Plant Cell Physiol 28: 1313–1320

    Google Scholar 

  • Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov. and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14: 140–145

    Google Scholar 

  • Shiba T and Harashima K (1986) Aerobic photosynthetic bacteria. Microbiol Sci 3: 376–378

    Google Scholar 

  • Shiba T and Simidu U (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int. J. Syst. Bacteriol. 32: 211–217

    Google Scholar 

  • Shiba T, Simidu U and Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38: 43–45

    Google Scholar 

  • Shiba T, Shioi Y, Takamiya K, Sutton DC and Wilkinson CR (1991) Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the east and west coasts of Australia. Appl Environ Microbiol 57: 295–300

    Google Scholar 

  • Shimada K (1995) Aerobic anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 105–122. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Sorokin DY, Tourova TP, Kuznetsov BB, Bryantseva IA and Gorlenko VM (2000) Roseinatronobacter thioxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a-containing bacterium isolated from a soda lake. Microbiology (New York) 69: 89–97

    Google Scholar 

  • Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S, Hosoya H, Tokiwa Y, Kanagawa T and Hanada S (1999) Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria. Int J Syst Evol Microbiol 49: 449–457

    Google Scholar 

  • Suzuki T, Muroga Y, Takahama M and Nishimura Y (1999a) Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol 49: 629–634

    Google Scholar 

  • Suzuki T, Muroga Y, Takahama M, Shiba T and Nishimura Y (1999b) Rubrimonas cliftonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from a saline lake. Int J Syst Evol Microbiol 49: 201–205

    Google Scholar 

  • Suzuki T, Muroga Y, Takahama M and Nishimura Y (2000) Roseibium denhamense gen. nov., sp. nov. and Roseibium hamelinense sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from the east and west coasts of Australia. Int J Syst Evol Microbiol 50: 2151–2156

    Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S and Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37: 889–893

    Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH and Fox GE (1984) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5: 315–326

    Google Scholar 

  • Yurkov V (2001) Aerobic phototrophic proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H and Stackebrandt E (eds) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, Springer-Verlag, New York (http://link.springer-ny.com/link/service/books/10125/)

    Google Scholar 

  • Yurkov V and Beatty JT (1998a) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 695–724

    Google Scholar 

  • Yurkov V and Beatty JT (1998b) Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 64: 337–341

    Google Scholar 

  • Yurkov VV and Csotonyi JT (2003) Aerobic anoxygenic phototrophs and heavy metal reducers from extreme environments. In: Pandalai SG (ed) Recent Research Developments in Bacteriology, Vol 1, pp 247–300. Transworld Research Network, Trivandrum, India

    Google Scholar 

  • Yurkov V and Van Gemerden H (1993) Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a microbial mat. Neth J Sea Res 31: 57–62

    Google Scholar 

  • Yurkov V, Krieger S, Stackebrandt E and Beatty JT (1999) Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J Bacteriol 181: 4517–4525

    Google Scholar 

  • Yurkova N, Rathgeber C, Swiderski J, Stackebrandt E, Beatty JT, Hall KJ and Yurkov V (2002) Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of a meromictic lake. FEMS Microbiol Ecol 40: 191–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathgeber, C., Beatty, J.T. & Yurkov, V. Aerobic Phototrophic Bacteria: New Evidence for the Diversity, Ecological Importance and Applied Potential of this Previously Overlooked Group. Photosynthesis Research 81, 113–128 (2004). https://doi.org/10.1023/B:PRES.0000035036.49977.bc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000035036.49977.bc

Navigation