Skip to main content
Log in

Recent Findings on the Phytoremediation of Soils Contaminated with Environmentally Toxic Heavy Metals and Metalloids Such as Zinc, Cadmium, Lead, and Arsenic

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

Due to their immutable nature, metals are a group of pollutants of much concern. As a result of human activities such as mining and smelting of metalliferous ores, electroplating, gas exhaust, energy and fuel production, fertilizer and pesticide application, etc., metal pollution has become one of the most serious environmental problems today. Phytoremediation, an emerging cost-effective, non-intrusive, and aesthetically pleasing technology, that uses the remarkable ability of plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, appears very promising for the removal of pollutants from the environment. Within this field of phytoremediation, the utilization of plants to transport and concentrate metals from the soil into the harvestable parts of roots and above-ground shoots, i.e., phytoextraction, may be, at present, approaching commercialization. Improvement of the capacity of plants to tolerate and accumulate metals by genetic engineering should open up new possibilities for phytoremediation. The lack of understanding pertaining to metal uptake and translocation mechanisms, enhancement amendments, and external effects of phytoremediation is hindering its full scale application. Due to its great potential as a viable alternative to traditional contaminated land remediation methods, phytoremediation is currently an exciting area of active research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ager FJ, Ynsa MD, Domínguez-Solís JR, Gotor C, Respaldiza MA & Romero LC (2002) Cadmium localization and quanti cation in the plant A. thaliana using micro-PIXE. Nuclear Instr. Methods in Phy. Res. Section B. Beam Interactions with Mat. and Atoms 189: 494–498

    Google Scholar 

  • Alkorta I & Garbisu C (2001) Phytoremediation of organic contaminants. Bioresource Technol. 79: 273–276

    Google Scholar 

  • Arazi T, Sunkar R, Kaplan B & Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J. 20: 171–182

    Google Scholar 

  • Assunçço AGL, Martins PD, De Folter S, Vooijs R, Schat H & Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 24: 217–226

    Google Scholar 

  • Baghour M, Moreno DA, Hernçndez J, Castilla N & Romero L (2001) Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants (Solanum tuberosum L. var. Spunta). J. Environ. Sci. Health Part A Tox. Hazard Subst. Environ. Eng. 36: 1389–1401

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-Strategies in the response of plants toheavy metals. J. Plant Nutr. 3: 643–654

    Google Scholar 

  • Baker AJM & Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1: 81–126

    Google Scholar 

  • Baker AJM & Whiting SN (2002) In search of the Holy Grail-a further step in understanding metal hyperaccumu-lation? New Phytol. 155: 1–7

    Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD & Smith JAC (2000) Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G & Vangronsveld J (Eds), Phytoremediation of contaminated soil and water (pp 85–107). Lewis Publisher, Boca Raton, FL, USA

    Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD & Reeves RD (1994a) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conser. Recycl. 11: 41–49

    Google Scholar 

  • Baker AJM, Reeves RD & Hajar ASM (1994b) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol. 127: 61–68

    Google Scholar 

  • Bennet LE, Burkhead JL, Hale KL, Terry N, Pilon M & Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual. 32: 432–440

    Google Scholar 

  • Bert V, Macnair MR, de Laguerie P, Saumitou-Laprade P & Petit D (2000) Zinc tolerance and accumulation in metallic-olous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol. 146: 225–233

    Google Scholar 

  • Bizily SP, Kim T, Kandasamy MK & Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its speci c activity for organic mercury detoxi cation in plants. Plant Physiol. 131: 463–471

    Google Scholar 

  • Bolan NS, Adriano DC, Mani PA & Duraisamy A (2003a) Immobilization and phytoavailability of cadmium in variable charge soils. II. E. ect of lime addition. Plant Soil 251: 187–198

    Google Scholar 

  • Bolan NS, Adriano DC & Naidu R (2003b) Role of phosphorus in (im) mobilization and bioavailability of heavy metals in the soil-plant system. Rev. Environ. Contam. Toxicol. 177: 1–44

    Google Scholar 

  • Boominathan R & Doran PM (2003a) Organic acid complexation, heavy metal distribution and the e. ects of ATPase inhibition in hairy roots of hyperaccumulator plant species. J. Biotechnol. 101: 131–146

    Google Scholar 

  • Boominathan R & Doran PM (2003b) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyper-accumulator, Thlaspi caerulescens. Biotechnol. Bioengineer. 20: 158–167

    Google Scholar 

  • Boyajian GE & Carreira LH (1997) Phytoremediation: a clean transition from laboratory to marketplace. Nat. Biotechnol. 15: 127–128

    Google Scholar 

  • Brennan MA & Shelley ML (1999) A model of the uptake, translocation, and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol. Engineer. 12: 271–297

    Google Scholar 

  • Brewer EP, Saunders JA, Angle JS, Chaney RL & McIntosh MS (1999) Somatic hybridization between the zinc accumu-lator Thlaspi caer ulescens and Brassica napous. Theore. Appl. Gen. 9: 761–771

    Google Scholar 

  • Briat JF & Lebrun M (1999) Plant responses to metal toxicity. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie 322: 43–54

    Google Scholar 

  • Brooks RR (1988) (Ed) Plants that Hyperaccumulate Heavy Metals. CAB International, Oxon, UK, 356 pp

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD & Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium species of indicator plants. J. Geochem. Explor. 7: 49–57

    Google Scholar 

  • Brown SL, Chaney RL, Angle JS & Baker AJ (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci. Soc. Am. J. 59: 125–133

    Google Scholar 

  • Chaney RL, Li YM, Brown SL, Homer FA, Malik M, Angle JS, Baker AJM, Reeves RD & Chin M (2000) Improving metal hyperaccumulator wild plant to commercial phytoex-traction systems: Approaches and progress. In: Terry N, Bañuelos G & Vangronsveld J (Eds), Phytoremediation of contaminated soil and water (pp 129–158). Lewis Publisher, Boca Raton, FL, USA

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS & Baker AJ (1997) Phytoremediation of metals. Curr. Opin. Biotechnol. 8: 279–284

    Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG & Khoo CS (1998) Phytoremediation-Focusing on accumulator plants that remediate metal-contaminated soils. Australasian J. Ecotoxicol. 4: 37–51

    Google Scholar 

  • Chen B, Christie P & Li X (2001) A modi ed glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere 42: 185–192

    Google Scholar 

  • Chen HM, Zheng CR, Tu C & Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41: 229–234

    Google Scholar 

  • Chen YX, He YF, Yang Y, Yu YL, Zheng SJ, Tian GM, Luo YM & Wong MH (2003) Effect of cadmium on nodulation and N2-xation of soybean in contaminated soils. Chemosphere 50: 781–787

    Google Scholar 

  • Clemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int. J. Occup. Med. Environ. Health 14: 235–239

    Google Scholar 

  • Clemens S, Palmgren MG & Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7: 309–315

    Google Scholar 

  • Cobbett C, May MJ, Howden R & Rolls B (1998) The glutathione-de cient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is de cient in c glutamilcysteine synthetase. Plant J. 16: 73–78

    Google Scholar 

  • Cobbett C & Goldsbrough P (2002) Phytochelatins and metallothioneins: Roles in heavy metal detoxi cation and homeostasis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 53: 159–182

    Google Scholar 

  • Collins YE & Stotzky G (1989) Factors a. ecting the toxicity of heavy metals to microbes. In: Beveridge TJ & Doyle RJ (Eds), Metal Ions and Bacteria (pp 31–90). Wiley, Toronto, Canada

    Google Scholar 

  • Cunningham SD & Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol. 110: 715–719

    Google Scholar 

  • Dahmani-Muller H, van Oort F, Gélie B & Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ. Pollut. 109: 231–238

    Google Scholar 

  • Dahmani-Muller H, van Oort F & Balabane M (2001) Metal extraction by Arabidopsis halleri grown on an unpolluted soil amended with various metal-bearing solids: a pot experiment. Environ. Pollut. 114: 77–84

    Google Scholar 

  • De Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC & Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol. 104: 255–261

    Google Scholar 

  • Delhaize E. A (1996) A metal-accumulator mutant of Arabidopsis thaliana. Plant Physiol. 111: 849–855

    Google Scholar 

  • Delorme TA, Gagliardi JV, Angle JS & Chaney RL (2001) Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can. J. Microbiol. 47: 773–776

    Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Seneco. JF, Sashti NA & Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arse-nate reductase and c glutamylcysteine synthetase expression. Nat. Biotechnol. 20: 1140–1145

    Google Scholar 

  • Diels N, van der Lelie D & Bastiaens L (2002) New developments in treatment of heavy metal contaminated soils. Re/Views in Environ. Sci. & Bio/Technol. 1: 75–82

    Google Scholar 

  • Doucleff M & Terry N (2002) Pumping out the arsenic. Nat. Biotechnol. 20: 1094–1095

    Google Scholar 

  • Dushenkov S, Skarzhinskaya M, Glimelius K, Gleba D & Raskin I (2002) Bioengineering of a phytoremediation plant by means of somatic hybridization. Int. J. Phytoremediation 4: 117–126

    Google Scholar 

  • Ebbs S, Lau I, Ahner B & Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta 214: 635–640

    Google Scholar 

  • Elmayan T & Tepfer M (1994) Synthesis of a bifunctional metallothionein/b-glucuronidase fusion protein in transgenic tobacco plants as a means of reducing leaf cadmium levels. Plant J. 6: 433–440

    Google Scholar 

  • Entry JA, Rygiewicz PT, Watrud LS & Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv. Environ. Res. 7: 123–138

    Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM & Robinson NJ (1992) Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMTA function. Plant Mol. Biol. 20: 1019–1028

    Google Scholar 

  • Evans LD (2002) The dirt on phytoremediation. J. Soil & Water Conservation 57: 12A–15A

    Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W & Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci. Total Environ. 284: 27–35

    Google Scholar 

  • Gabbrielli R, Pandolfini T, Vergnano O & Palandri MR (1990) Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil. 122: 271–277

    Google Scholar 

  • Garbisu C & Alkorta I (1997) Bioremediation: principles and future. J. Clean Technol. Environ. Toxic. & Occup. Med. 6: 351–366

    Google Scholar 

  • Garbisu C & Alkorta I (2001) Phytoextraction: a cost-e. ective plant-based technology for the removal of metals from the environment. Bioresource Technol. 77: 229–236

    Google Scholar 

  • Garbisu C & Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur. J. Min. Proc. & Environ. Protect. 3: 58–66

    Google Scholar 

  • Garbisu C, Hernández-Allica J, Barrutia O, Alkorta I & Becerril JM (2002) Phytoremediation: A technology using green plants to remove contaminants from polluted areas. Rev. Environ. Health 17: 75–90

    Google Scholar 

  • Gisbert C, Ros R, de Haro A, Walker DJ, Bernal MP, Serrano R & Navarro-Avino J (2003) A plant genetically modi ed that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun. 303: 440–445

    Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY & Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc. Natl. Acad. Sci. USA 96: 5973–5977

    Google Scholar 

  • Gong JM, Lee DA & Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. 2003 Proc. Natl. Acad. Sci. USA 100: 10118–10123

    Google Scholar 

  • Grichko VP, Filby B & Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J. Biotechnol. 81: 45–53

    Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim. Biophys. Acta (BBA)-Biomembranes 1465: 190–198

    Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F & Noguchi A (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196: 277–281

    Google Scholar 

  • Hattori J, Labbe H & Miki BL (1994) Construction and expression of a metallothionein-beta-glucuronidase gene fusion. Genome 37: 508–512

    Google Scholar 

  • Heaton ACP, Rugh CL, Wang N & Meagher RB (1998) Phytoremediation of mercury-and methylmercury-polluted soils using genetically engineered plants. J. Soil Contam. 7: 497–509

    Google Scholar 

  • Hill KA, Lion LW & Ahner BA (2002) Reduced Cd accumu-lation in Zea mays: a protective role for phytosiderophores? Environ. Sci. Technol. 36: 5363–5368

    Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL & Wagner GJ (2000) Expression of Arabidopsis CAX2in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124: 125–133

    Google Scholar 

  • Homer FA, Morrison RS, Brooks RR, Clement J & Reeves RD (1991) Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil. 138: 195–205

    Google Scholar 

  • Iannelli MA, Pietrini F, Fiore L, Petrilli L & Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol. Biochem. 40: 977–982

    Google Scholar 

  • Jauert P, Schumacher TE, Boe A & Reese RN (2002) Rhizosphere acidification and cadmium uptake by strawberry clover. J. Environ. Qual. 31: 627–633

    Google Scholar 

  • Kamnev AA & van der Lelie D (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci. Rep. 20: 239–258

    Google Scholar 

  • Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M & Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Pollut. 107: 225–231

    Google Scholar 

  • Koppolu L & Clements LD (2003) Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part I: Preparation of synthetic hyperaccumulator biomass. Biomass & Bioenergy 24: 69–79

    Google Scholar 

  • Krämer U & Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl. Microbiol. Biotechnol. 55: 661–672

    Google Scholar 

  • Krämer U (2000) Cadmium for all meals-plants with an unusual appetite. New Phytol. 145: 1–5

    Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM & Smith JAC (1996) Free histidine as a metal chelator in plants that hyperaccumulate nickel. Nature 379: 635–638

    Google Scholar 

  • Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L, Schroeder JI & Salt DE (2003) Genomic scale pro ling of nutrient and trace elements in Arabidopsis thaliana. Nat. Biotechnol. 21: 1215–1221

    Google Scholar 

  • Lasat MM, Baker AJM & Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanism involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol. 118: 875–883

    Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J. Environ. Qual. 31: 109–120

    Google Scholar 

  • Lehoczky E, Marth P, Szabados I, Palkovics M & Lukács P (2000) Influence of soil factors on the accumulation of cadmium by lettuce. Commun. Soil Sci. Plant Anal. 31: 2425–2431

    Google Scholar 

  • Lehoczky E, SzabóL & Horváth S (1998) Cadmium uptake by plants in different soils. Commun. Soil Sci. Plant Anal. 29: 1903–1912

    Google Scholar 

  • Linger P, Müssig J, Fischer H & Kobert J (2002) Industrial hemp (Cannabis sativa L. ) growing on heavy metal contam-inated soil: bre quality and phytoremediation potential. Industr. Crops Protect. 16: 33–42

    Google Scholar 

  • Liu D, Jiang W, Liu C, Xin C & Hou W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard (Brassica juncea L. ). Bioresource Technol. 71: 273–277

    Google Scholar 

  • Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ & McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 128: 1359–1367

    Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ & McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi geosingense. New Phytol. 145: 11–20

    Google Scholar 

  • Long XX, Yang XE, Ye ZQ, Ni WZ & Shi WY (2002) Differences of uptake and accumulation of zinc in four species of Sedum. Acta Botanica Sinica 44: 152–157

    Google Scholar 

  • Luo YM, Christie P & Baker AJM (2000) Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere 41: 161–164

    Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y & Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409: 579

    Google Scholar 

  • Ma M, Lau PS, Jia YT, Tsang WK, Lam SKS, Tam NFY & Wong YS (2003) The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Sci. 164: 51–60

    Google Scholar 

  • Macnair MR (2002) Within-and between-population genetic variation for Zn accumulation in Arabidopsis halleri. New Phytol. 155: 59–66

    Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P & Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc. Royal Soc. London B 266: 2175–2179

    Google Scholar 

  • Madejon P, Murillo JM, Maranon T, Cabrera F & Soriano MA (2003) Trace element and nutrient accumulation in sun. ower plants two years after the Aznalcollar mine spill. Sci. Total Environ. 20: 239–257

    Google Scholar 

  • Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA & Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126: 1646–1667

    Google Scholar 

  • McGrath SP, Shen ZG & Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188: 153–159

    Google Scholar 

  • McGrath SP, Lombi E & Zhao FJ (2001) What's new about cadmium hyperaccumulation? New Phytol. 149: 2–3

    Google Scholar 

  • McGrath SP, Zhao FJ & Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv. Agronomy 75: 1–56

    Google Scholar 

  • McGrath SP & Zhao FJ (2003) Phytoextraction of metals and metalloids. Curr. Opin. Biotechnol. 14: 277–282

    Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv. Biochem. Eng. Biotechnol. 78: 97–123

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3: 153–162

    Google Scholar 

  • Mejare M & Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 19: 67–73

    Google Scholar 

  • Mengoni A, Gonnelli C, Galardi F, Gabbrielli R & Bazzicalupo M (2000) Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random ampli ed polymorphic DNA analysis. Mol. Ecol. 9: 1319–1324

    Google Scholar 

  • Misra S & Gedamu L (1989) Heavy metal tolerance transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor. Appl. Gen. 78: 161–168

    Google Scholar 

  • Morgan AJ, Evans M, Winters C, Gane M & Davies MS (2002) Assaying the e. ects of chemical ameliorants with earthworms and plants exposed to a heavily polluted metalliferous soil. Eur. J. Soil Biol. 38: 323–327

    Google Scholar 

  • Navari-Izzo F & Quartacci MF (2001) Phytoremediation of metals. Tolerance mechanisms against oxidative stress. Minerva Biotec. 13: 73–83

    Google Scholar 

  • Nedelkoska TV & Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol. Bioeng. 67: 607–615

    Google Scholar 

  • O'Connor CS, Leppi NW, Edwards R & Sunderland G (2003) The combined use of electrokinetic remediation and phyto-remediation to decontaminate metal-polluted soils: a labora-tory-scale feasibility study. Environ. Monit. Assess. 84: 141–158

    Google Scholar 

  • Oremland RS & Stolz JF (2003) The ecology of arsenic. Science 300: 939–944

    Google Scholar 

  • Pawlowska TE, Chaney RL, Chin M& Charvat I (2000) Effects of metal phytoextraction practices on the indigenous com-munity of arbuscular mycorrhizal fungi at a metal-contam-inated land ll. Appl. Environ. Microbiol. 66: 2526–2530

    Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D & Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperac-cumulator Thlaspi caerulescens. Proc. Natl. Acad. Sci. USA 25: 4956–4960

    Google Scholar 

  • Peralta-Videa JR, Gardea-Torresdey JL, Gómez E, Tiemann KJ, Parsons JG & Carrillo G (2002) Effect of mixed cadmium, copper, nickel and zinc at di. erent pHs upon alfalfa growth and heavy metal uptake. Environ. Pollut. 119: 291–301

    Google Scholar 

  • Pichtel J, Kuroiwa K & Sawyerr HT (2000) Distribution of Pb, Cd and Ba in soils and plants of two contaminated soils. Environ. Pollut. 110: 171–178

    Google Scholar 

  • Pickering IJ, Prince RC, George GN, Rauser WE, Wickrama-singhe WA, Watson AA, Dameron CT, Dance IG, Fairlie DP & Salt DE (1999) X-ray absorption spectroscopy of cadmium phytochelatin and model systems. Biochim. Biophys. Acta-Prot. Struct. Mol. Enzymol. 1429: 351–364

    Google Scholar 

  • Pickering IJ, Prince RC, George GN, Smith RD, George GN & Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 122: 1171–1177

    Google Scholar 

  • Pilon-Smits E & Pilon M (2000) Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci. 5: 235–236

    Google Scholar 

  • Pineros MA, Shaff JE & Kochian LV (1998) Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol. 116: 1393–1401

    Google Scholar 

  • Pulford ID & Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ. Int. 29: 529–540

    Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup (commentary). Proc. Natl. Acad. Sci. USA 93: 3164–3166

    Google Scholar 

  • Raskin I, Smith RD & Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 8: 221–226

    Google Scholar 

  • Rea PA (2003) Ion genomics. Nat. Biotechnol. 21: 1149–1151

    Google Scholar 

  • Rengel Z (2000) Ecotypes of Holcus lanatus tolerant to zinc toxicity also tolerate zinc deficiency. Ann. Bot. 86: 1119–1126

    Google Scholar 

  • Robinson B, Russell C, Hedley M & Clothier B (2001) Cadmium uptake by rhizobacteria: implications for New Zealand pastureland. Agri., Eco. & Environ. 87: 315–321

    Google Scholar 

  • Rout GR, Samantaray S & Das P (1999) In vitro selection and biochemical characterisation of zinc and manganese adapted callus lines in Brassica spp. Plant Sci. 146: 89–100

    Google Scholar 

  • Rubinelli P, Siripornadulsil S, Gao-Rubinelli F & Sayre RT (2002) Cadmium-and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for H43 protein function in iron assimilation. Planta 215: 1–13

    Google Scholar 

  • Rugh CL, Gragson GM, Meagher RB & Merkle SA (1998a) Toxic mercury reduction and remediation using transgenic plants with a modi ed bacterial gene. Hort. Science 33: 618–621

    Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB & Merkle SA (1998b) Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol. 16: 925–928

    Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO & Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modi ed bacterial merA gene. Proc. Natl. Acad. Sci. USA 93: 3182–3187

    Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC & Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ. Sci. Technol. 36: 4676–4680

    Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I & Raskin I (1995a) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol. 13: 468–475

    Google Scholar 

  • Salt DE, Prince RC, Pickering IJ & Raskin I (1995b) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109: 1427–1433

    Google Scholar 

  • Salt DE, Prince RC, Baker AJM, Raskin I & Pickering IJ (1999) Zinc ligand in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectros-copy. Environ. Sci. Technol. 33: 713–717

    Google Scholar 

  • Salt DE, Prince RC & Pickering IJ (2002) Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchemical J. 71: 255–259

    Google Scholar 

  • Salt DE, Smith RD & Raskin I (1998) Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 643–668

  • Sanitàdi Toppi L & Gabbrielli R (1999) Response to cadmium in higher plants. Environ. Experim. Bot. 41: 105–130

    Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT & Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl. Environ. Microbiol. 69: 490–494

    Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J & Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J. Exp. Bot. 53: 1–12

    Google Scholar 

  • Schneider T, Haag-Kerwer A, Maetz M, Niecke M, Povh B, Rausch T & Schübler A (1999) Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L. Nuclear Instr. Methods Phys. Res. Section B: Interaction with Materials and Atoms 158: 329–334

    Google Scholar 

  • Schutzendubel A & Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53: 1351–1365

    Google Scholar 

  • Schwartz C, Morel JL, Saumier S, Whiting SN & Baker AJM (1999) Root development of the zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant Soil 208: 103–115

    Google Scholar 

  • Shanks JV & Morgan J (1999) Plant 'hairy root' culture. Curr. Opin. Biotechnol. 10: 151–155

    Google Scholar 

  • Shann JR (1995) The role of plants and plant/microbial systems in the reduction of exposure. Environ. Health Perspect. 103: 13–15

    Google Scholar 

  • Shen ZG, Zhao FJ & McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ. 20: 898–906

    Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R & Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl. Microbiol. Biotechnol. 61: 405–412

    Google Scholar 

  • Song W-Y, Sohn EJ, Martinoia E, Lee YJ, Yang Y-Y, Jasinski M, Forestier C, Hwang I & Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotechnol. 21: 914–919

    Google Scholar 

  • Stomp AM, Han KH, Wilbert S, Gordon MP & Cunningham SD (1994) Genetic strategies for enhancing phytoremediation. Ann. NY Acad. Sci. 721: 481–491

    Google Scholar 

  • Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Ostenkowski P, Urbanczyk N, Wiesend WN & Murray KS (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol. Prog. 19: 273–280

    Google Scholar 

  • Tu C, Ma LQ & Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J. Environ. Qual. 31: 1671–1675

    Google Scholar 

  • United States Environmental Protection Agency (1992) Selection of control technologies for remediation of lead battery recycling sites. EPA/540/S-92/011. US Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC, USA

    Google Scholar 

  • United States Environmental Protection Agency (2000a) Electrokinetic and phytoremediation in situ treatment of metal-contaminated soil: state-of-the-practice. EPA/542. US Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC, USA

    Google Scholar 

  • United States Environmental Protection Agency (2000b) Introduction to phytoremediation EPA/600/R-99/107. US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA

    Google Scholar 

  • Vatamaniuk OK, Bucher EA, Ward JT & Rea PA (2002) Worms take the 'phyto' out of 'phytochelatins'. Trends Biotechnol. 20: 61–64

    Google Scholar 

  • Visoottiviseth P, Francesconi K & Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoreme-diation of arsenic contaminated land. Environ. Pollut. 118: 453–461

    Google Scholar 

  • Wang QR, Cui YS, Liu XM, Dong YT & Christie P (2003) Soil contamination and plant uptake of heavy metals at polluted sites in China. J. Environ. Sci. Health Part A Tox. Hazard Subst. Environ. Eng. 38: 823–838

    Google Scholar 

  • Wang QR, Liu XM, Cui YS, Dong YT & Christie P (2002a) Responses of legumes and non-legume crop species to heavy metals in soils with multiple metal contamination. J. Environ. Sci. Health Part A Tox. Hazard Subst. Environ. Eng. 37: 611–621

    Google Scholar 

  • Wang Z, Shan X & Zhang S (2002b) Comparison between fractionation and bioavailability of trace elements in rhizo-sphere and bulk soils. Chemosphere 46: 1163–1171

    Google Scholar 

  • Weber O, Scholz RW, Bühlmann R & Grasmück D (2001) Risk perception of heavy metal soil contamination and attitudes toward decontamination strategies. Risk Analysis 21: 967–977

    Google Scholar 

  • Wenzel WW, Adriano DC, Salt D & Smith R (1999) Phytoremediation: A plant-microbe-based remediation system. In: SSSA (Ed), Bioremediation of Contaminated Soils (pp 457–508) Agronomy Monograph no. 37, SSSA, Madison, WI, USA

    Google Scholar 

  • Whiting SN, Leake JR, McGrath SP & Baker AJM (2000) Positive response to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 145: 199–210

    Google Scholar 

  • Williams LE, Pittman JK & Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta (BBA)-Biomembranes 1465: 104–126

    Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50: 775–780

    Google Scholar 

  • Zhang W, Cai Y, Tu C & Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci. Total Environ. 300: 167–177

    Google Scholar 

  • Zhao FJ, Lombi E, Breedon T & McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ. 23: 507–514

    Google Scholar 

  • Zhao FJ, Hamon RE & McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol. 151: 613–620

    Google Scholar 

  • Zhu YL, Pilon-Smits EA, Jouanin L & Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119: 73–80

    Google Scholar 

  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L & Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol. 121: 1169–1178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkorta, I., Hernández-Allica, J., Becerril, J. et al. Recent Findings on the Phytoremediation of Soils Contaminated with Environmentally Toxic Heavy Metals and Metalloids Such as Zinc, Cadmium, Lead, and Arsenic. Re/Views in Environmental Science and Bio/Technology 3, 71–90 (2004). https://doi.org/10.1023/B:RESB.0000040059.70899.3d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RESB.0000040059.70899.3d

Navigation