Skip to main content
Log in

Effect of Surface Structure on Behavior of RuO2 Electrodes in Sulfuric Acid Aqueous Solution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of RuO2 electrodes are studied by means of cyclic voltammetry, potential step, and impedance measurements in aqueous 0.5 mol/dm3 H2SO4 as a supporting electrolyte solution and applying the hanging electrolyte meniscus technique. Two types of the electrodes are used: bulk “as-grown” single-crystal having (101) exposed interface and 500 nm film produced by reactive RF magnetron sputtering at 450°C. The surface structure of the RuO2 electrodes prepared by different techniques is defined from X-ray LAUE backscattering. Experimental data show that, for both RuO2 electrodes, the charging components include a slow diffusion-controlled contribution, due to proton injection–ejection. The diffusion characteristics and the diffusion coefficients for the same electrodes are estimated and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, New York: Kluwer, 1999.

    Google Scholar 

  2. Huggins, R.A., Solis State Ionics, 2000, vol. 134, p. 725.

    Google Scholar 

  3. Zheng, J.P. and Jow, T.R., J. Power Sources, 1996, vol. 62, p. 155.

    Google Scholar 

  4. Burke, A., J. Power Sources, 2000, vol. 91, p. 37.

    Google Scholar 

  5. Trasatti, S., in Interfacial Electrochemistry: Theory, Experiment, and Applications, Wieckowski, A., Ed., New York: Marcel Dekker, 1999, p. 769.

    Google Scholar 

  6. Tomkievicz, M., Huang, Y.S., and Pollak, F.H., J. Electrochem. Soc., 1983, vol. 130, p. 1514.

    Google Scholar 

  7. O'Grady, W.E., Goel, A.K., Pollak, F.H., Park, H.L., and Huang, Y.S., J. Electroanal. Chem., 1983, vol. 151, p. 295.

    Google Scholar 

  8. Tomkievicz, M., Pollak, F.H., and O'Grady, W.E., J. Electrochem. Soc., 1984, vol. 131, p. 2093.

    Google Scholar 

  9. Doubova, L.M., Daolio, S., and De Battisti, A., J. Electroanal. Chem., 2002, vol. 532, p. 25.

    Google Scholar 

  10. Lister, T.E., Chu, Y., Cullen, W., You, H., Yonco, R.M., Mitchell, J.F., and Nagy, Z., J. Electroanal. Chem., 2002, vol. 524–525, p. 201.

    Google Scholar 

  11. Basame, S.B., Habel-Rodriguez, D., and Keller, D., J. App. Surf. Sci., 2001, vol. 1–2, p. 62.

    Google Scholar 

  12. Bai, G.-R., Wang, A., Foster, C.M., and Vetrone, J., Thin Solid Films, 1997, vol. 310, p. 75.

    Google Scholar 

  13. Shin, W.-C. and Yoon, S.-G., J. Electrochem. Soc., 1997, vol. 144, p. 1055.

    Google Scholar 

  14. Lee, D.-J., Kang, S.-W., and Rhee, S.-W., Thin Solid Films, 2002, vol. 413, p. 237.

    Google Scholar 

  15. Ganesan, P.G., Eizenberg, M., and Dornfest, C., J. Electrochem. Soc., 2002, vol. 149, p. G510.

    Google Scholar 

  16. Dmowski, W., Egami, T., Swider-Lyons, K.E., Love, C.T., and Rolison, D.R., J. Phys. Chem. B, 2002, vol. 106, p. 12677.

    Google Scholar 

  17. Park, J.H. and Park, O.O., J. Power Sources, 2002, vol. 109, p. 121.

    Google Scholar 

  18. Armelao, L., Bareca, D., and Moraru, B., J. Non-Cryst. Solids, 2003, vol. 306, p. 364.

    Google Scholar 

  19. Trasatti, S. and Doubova, L.M., J. Chem. Soc., Faraday Trans., 1995, vol. 91, p. 3311.

    Google Scholar 

  20. Doubova, L.M., Daolio, S., Pagura, C., De Battisti, A., and Trasatti, S., Rus. J. Electrochem., 2002, vol. 38, p. 20.

    Google Scholar 

  21. Berger, H., Tang, H., and Levy, F., J. Cryst. Growth, 1993, vol. 130, p. 108.

    Google Scholar 

  22. Battaglin, G., Rigato, V., Zandolin, S., Benedetti, A., Ferro, S., Nanni, L., De Battisti, A., Chem. Mater., 2004, vol. 16, p. 946.

    Google Scholar 

  23. Roginskaya, Yu.E., Gol'dshtein, M.D., Morozova, O.V., and Glazunova, L.D., Rus. J. Electrochem., 2001, vol. 37, p. 1229.

    Google Scholar 

  24. Sarangapani, S., Tilak, B.V., and Chen, C.-P., J. Electrochem. Soc., 1996, vol. 143, p. 3791.

    Google Scholar 

  25. Fu, R., Ma, Z., and Zheng, J.P., J. Phys. Chem. B, 2002, vol. 106, p. 3592.

    Google Scholar 

  26. Long, J.W., Swider, K.E., Merzbacher, C.I., and Rolison, D.R., Langmuir, 1999, vol. 15, p. 780.

    Google Scholar 

  27. Suh, D.J., Park, T.-J., Kirn, W.-I., and Hong, I.-K., J. Power Sources, 2003, vol. 117, p. 1.

    Google Scholar 

  28. Galizzoli, D., Tantarini, F., and Trasatti, S., J. Appl. Electrochem., 1974, vol. 4, p. 57.

    Google Scholar 

  29. Galizzoli, D., Tantarini, F., and Trasatti, S., J. Appl. Electrochem., 1975, vol. 5, p. 203.

    Google Scholar 

  30. Doblhofer, K., Metiko, M., Ogumi, Z., and Gerisher, H., Ber. Bunsen-Ges. Phys. Chem., 1978, vol. 82, p. 1046.

    Google Scholar 

  31. Conway, B.E., J. Electrochem. Soc., 1991, vol. 138, p. 1539.

    Google Scholar 

  32. Nanni, L., Polizzi, S., Benedetti, A., and De Battisti, A., J. Electrochem. Soc., 1999, vol. 146, p. 220.

    Google Scholar 

  33. De Battisti, A., Ferro, S., and Dal Colle, M., J. Phys. Chem., 2001, vol. 195, p. 679.

    Google Scholar 

  34. Blouin, M. and Guay, D., J. Electrochem. Soc., 1997, vol. 144, p. 573.

    Google Scholar 

  35. Chen, L., Guay, D., Pollak, F.H., and Levy, F., J. Electroanal. Chem., 1997, vol. 429, p. 185.

    Google Scholar 

  36. Lister, T.E., Tolmachev, Y.V., Chu, Y., Cullen, W.G., Yiu, H., Yonco, R., and Nagy, Z., J. Electroanal. Chem., 2003, vol. 554–555, p. 71.

    Google Scholar 

  37. De Battisti, A., Lodi, G., Battaglin, G., and Benedetti, A., Can. J. Chem., 1997, vol. 75, p. 1759.

    Google Scholar 

  38. Benedetti, A., Riello, P., Battaglin, G., De Battisti, A., and Barbieri, A., J. Electroanal. Chem., 1994, vol. 376, p. 195.

    Google Scholar 

  39. Greef, R., Peat, R., Peter, L.M., Pletcher, D., and Robinson, J., Instrumental Methods in Electrochemistry, Chichester: Ellis Horwood, 1985, p. 179.

    Google Scholar 

  40. De Levie, R., Electrochim. Acta, 1963, vol. 8, p. 751.

    Google Scholar 

  41. De Levie, R., Electrochim. Acta, 1964, vol. 9, p. 1231.

    Google Scholar 

  42. Stoynov, Z.B., Grafov, B.M., Savova-Stoynov, B.S., and Elkin, V.V., Elektrokhimicheskii impedans (The Electrochemical Impedance), Moscow: Nauka, 1991.

    Google Scholar 

  43. Rishpon, J. and Gottesfeld, S., J. Electrochem. Soc., 1984, vol. 131, p. 1960.

    Google Scholar 

  44. Vol'fkovich, Yu.M. and Serdyuk, T.M., Rus. J. Electrochem., 2002, vol. 38, p. 935.

    Google Scholar 

  45. Battaglin, G., De Battisti, A., Barbieri, A., Giatti, A., and Marchi, A., Surface Sci., 1991, vol. 251–252, p. 73.

    Google Scholar 

  46. Lodi, G., Zucchini, G.L., De Battisti, A., Giatti, A., Battaglin, G., and Della Mea, G., Surf. Sci., 1991, vol. 251–252, p. 836.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doubova, L.M., De Battisti, A., Daolio, S. et al. Effect of Surface Structure on Behavior of RuO2 Electrodes in Sulfuric Acid Aqueous Solution. Russian Journal of Electrochemistry 40, 1115–1122 (2004). https://doi.org/10.1023/B:RUEL.0000048642.73284.4f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUEL.0000048642.73284.4f

Navigation