Skip to main content
Log in

Extraction Chemistry of Palladium(II). Mechanism of Antagonistic Synergistic Extraction of Palladium By A 4-Aroyl Derivative of 1-phenyl-3-Methyl-Pyrazolone-5- one and Trialkylamine of High Molecular Weight

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The synergistic extraction behavior of PdII, one of the main radioactive fission products in the reprocessing process, from HNO3 solutions with a 4-aroyl derivative of 1-phenyl-3-methyl-pyrazolone-5-one (PMP), a weakly acidic chelating extractant 1-phenyl-3-methyl-4-(2-methoxybenzoyl)-pyrazolone-5-one (HPMMBP), and a trialkylamine of high molecular weight, tri-iso-octylamine (TiOA), has been studied. An obviously antagonistic extraction effect was observed in the extraction system under the given conditions. To understand this phenomenon, a preliminary investigation was performed to explain the mechanism of this reaction. According to the theory of the corresponding solutions (TCS), the association between HPMMBP and TiOA is presented and discussed in the organic phase. An associated species HPMMBP·TiOA formed through hydrogen bonding in a CHCl3 medium might be the main reason why an antagonistic extraction effect occurred. The association constant between HPMMBP and TiOA was calculated to be 0.212 ± 0.03

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Uchiyama, S. Fujine, S. Hotoku and M. Maeda, Nucl. Technol., 102, 341 (1993).

    Google Scholar 

  2. R.J. Taylor, I. May, V.S. Koltunov, S.M. Baranov, V.I. Marchenko, E.A. Mezhov, V.G. Pastuschak, G.I. Zhuravleva and O.A. Savilova, Radiochimi. Acta, 81, 149 (1998).

    Google Scholar 

  3. G. Uchiyama, H. Mineo, T. Asakura, S. Hotoku, M. Iizuka, S. Fujisaki, H. Isogai, Y. Itoh, M. Sato and N. Hosoya, The 3th Int. Conference of NUCEF 2001, Japan Atomic Energy Research Institute, JAERI-Conf 2002-004, 197, 2002.

  4. V.S. Koltunov and S.M. Baranov, Proc. of the Int. Conf. on Evaluation of Emerging Nuclear Fuel Cycle Systems, Global '95, Versailles, France, 577, 1995.

    Google Scholar 

  5. A. Zhang, J. Hu, X. Zhang and F. Wang, Solvent Extr. Ion Exch., 19, 965 (2001).

    Google Scholar 

  6. A. Zhang, J. Hu, X. Zhang and F. Wang, J. Radioanal. Nucl. Chem., 253, 101 (2002).

    Google Scholar 

  7. Z. Kolarik, U. Müllich and F. Gassner, Solvent Extr. Ion Exch., 17, 1155 (1999).

    Google Scholar 

  8. E.P. Horwitz and D.G. Kalina, Solvent Extr. Ion Exch., 2, 179 (1984).

    Google Scholar 

  9. Y. Morita, T. Fujiwara and K. Shirahashi, Proc. of the Int. Conf. on Evaluation of Emerging Nuclear Fuel Cycle Systems; Global '95, Versailles, France, 1163, 1995.

    Google Scholar 

  10. C. Madic, P. Blanc, N. Condamines, P. Baron, B. Berthon, C. Nicol, C. Pozo, M. Lecomte, Proc. of 4th Int. Conf. on Nuclear Fuel Reprocessing and Waste Management; RECOD'94, 3, 24, 1994.

    Google Scholar 

  11. M.S. Murali and J.N. Mathur, Solvent Extr. Ion Exch., 19, 61 (2001).

    Google Scholar 

  12. S. Tachimori, Y. Sasaki and S. Suzuki, Solvent Extr. Ion Exch., 20, 687 (2002).

    Google Scholar 

  13. W.W. Schulz and E.P. Horwitz, Sep. Sci. Technol., 23, 1191 (1988).

    Google Scholar 

  14. A. Zhang, Y. Wei and M. Kumagai, Solvent Extr. Ion Exch., 21, 591 (2003).

    Google Scholar 

  15. Y. Wei, A. Zhang, M. Kumagai, M. Watanabe and N. Hayashi, J. Nucl. Sci. Technol., 41(3), 1 (2004).

    Google Scholar 

  16. E.P. Horwitz, M.L. Dietz and D.E. Fisher, Solvent Extr. Ion Exch., 9, 1 (1991).

    Google Scholar 

  17. A. Zhang, Y. Wei, M. Kumagai, Y. Koma and T. Koyama, Radiat. Phys. Chem., 72, (2004). in press.

  18. E.P. Horwitz, R. Chiarizia and M.L. Dietz, React. and Funct. Polymers, 33, 25 (1997).

    Google Scholar 

  19. E.C.O. Kafor and B.A. Uzoukwu, Radiochim. Acta, 51, 167 (1990).

    Google Scholar 

  20. A. Zhang and Z. Yang, Chinese J. Process Eng., 1, 272 (2001).

    Google Scholar 

  21. M.L.P. Reddy, S.K. Sahu and V. Chakravortty, Solvent Extr. Ion Exch., 18, 1135 (2000).

    Google Scholar 

  22. A. Zhang, B. Qian and G. Gao, Chinese J. Appl. Chem., 13, 90 (1996).

    Google Scholar 

  23. X. Li, H. Wanyan and R. Yang, Polyhedron, 9, 2285 (1990).

    Google Scholar 

  24. J.P. Brunette, M. Taheri, G.G. Grandmont and M.J.F. Leroy, Polyhedron, 1, 457 (1982).

    Google Scholar 

  25. S.S. Yun, H.B. Yang and H.S. Park, Polyhedron, 4, 1865 (1985).

    Google Scholar 

  26. J.P. Brunette, M. Lakkis, G.G. Grandmont and M.J.F. Leroy, Polyhedron, 1, 461 (1982).

    Google Scholar 

  27. A. Zhang, B. Qian and H. He, Chemistry, 9, 42 (1996).

    Google Scholar 

  28. M.Y. Mirza and R.T. Bailey, Inorg. Nucl. Chem., 41, 772 (1979). TMCH 5884 576

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, A., Wanyan, G. & Kumagai, M. Extraction Chemistry of Palladium(II). Mechanism of Antagonistic Synergistic Extraction of Palladium By A 4-Aroyl Derivative of 1-phenyl-3-Methyl-Pyrazolone-5- one and Trialkylamine of High Molecular Weight. Transition Metal Chemistry 29, 571–576 (2004). https://doi.org/10.1023/B:TMCH.0000037532.41519.61

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TMCH.0000037532.41519.61

Keywords

Navigation