Skip to main content
Log in

Computation of Heat Capacities of Solids Using a General Tarasov Equation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The general Tarasov function is fitted to the skeletal heat capacities of materials with widely different crystal structures. Examples are chosen from flexible macromolecules (polyethylene, polypropylene, poly(ethylene terephthalate), selenium, rigid macromolecules (diamond and graphite), and a small molecule (fullerene, C60). A new optimization approach using the MathematicaTM software is developed. It results in one-, two-, and three-dimensional Debye temperatures, Θ1, Θ2 and Θ3 the fitting parameters of the Tarasov function. In addition to the Tarasov function, the evaluation of the heat capacities makes use of approximate group-vibrational spectra. The results support the earlier assumption that Θ2=Θ3 for simple, solid, linear macromolecules. In more complicated bonding situations, Θ1, Θ2 and Θ3 are used as averaging fitting parameters. This general approach provides an improvement in the quantitative thermal analyses of polymers and other substances included in the ATHAS Data Bank. Sufficient programming information is provided to enable anyone the computation with a copy of the popular MathematicaTM software. The programming file is also downloadable from the WWW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Tarasov, Compt. Rend. Acad. Sci. URSS, 46 (1945) 110.

    CAS  Google Scholar 

  2. W. H. Stockmayer and C. E. Hecht, J. Chem. Phys., 21 (1953) 1954.

    Article  CAS  Google Scholar 

  3. M. Dole, Fortschr. Hochpol. Forsch., 2 (1960) 221.

    Article  CAS  Google Scholar 

  4. B. Wunderlich, J. Chem. Phys., 37 (1962) 1207.

    Article  CAS  Google Scholar 

  5. A. Einstein, Ann. Physik, 22 (1907) 180, 800.

    Google Scholar 

  6. P. Debye, Ann. Phys., 39 (1912) 789.

    Article  CAS  Google Scholar 

  7. see for example E. Schrödinger, in H. Geiger and K. Scheel, eds, Handbuch der Physik, Vol. 10, Springer Verlag, Berlin 1926, p. 275.

    Google Scholar 

  8. M. Born and Th. von Kármán, Phys. Z., 13 (1912) 297; 14 (1915) 15.

    CAS  Google Scholar 

  9. B. Wunderlich, Pure and Appl. Chem., 67 (1995) 1919; for a detailed assessment of the method see: H. S. Bu, S. Z. D. Cheng and B. Wunderlich, J. Phys. Chem., 91 (1987) 4179.

    Article  Google Scholar 

  10. V. V. Tarasov, Zh. Fiz. Khim., 24 (1950) 111.

    CAS  Google Scholar 

  11. S-F. Lau and B. Wunderlich, J. Thermal Anal., 28 (1983) 59.

    Article  CAS  Google Scholar 

  12. For experimental data see: U. Gaur, H.-C. Shu, A. Mehta, S.-F. Lau, B. B. Wunderlich, M. Varma-Nair and B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (1981) 89, 119, 1001, 1051; 11 (1982) 313, 1065; 12 (1983) 29, 65, 91; and 20 (1991) 349; and for fitted data check our WWW address on the Internet: http://funnelweb.utcc.utk.edu/~athas.

    Article  CAS  Google Scholar 

  13. B. Wunderlich and H. Bauer, Adv. Polym. Sci., 7 (1970) 151.

    Article  CAS  Google Scholar 

  14. V. V. Tarasov and G. A. Yunitskii, Zh. Fiz. Chim., 39 (1965) 2077.

    CAS  Google Scholar 

  15. U. Gaur, G. Pultz, H. Wiedemeier and B. Wunderlich, J. Thermal Anal., 21 (1981) 309.

    Article  CAS  Google Scholar 

  16. S. Wolfram, The Mathematica: A System for Doing Mathematics by Compute, Addison-Wesley, Reading, MA 1995.

    Google Scholar 

  17. http://funnelweb.utcc.utk.edu/~athas.

  18. Mathematica version 2.2 or higher, Wolfram Research, PO Box 6059, Champaign, IL 61826-6059; (Tel.: 1-800-441-MATH, email: info@wri.com).

  19. W. Nernst and F. A. Lindemann, Z. Electrochem., 17 (1911) 817.

    CAS  Google Scholar 

  20. R. Pan, M. Varma-Nair and B. Wunderlich, J. Thermal Anal., 35 (1989) 955.

    Article  CAS  Google Scholar 

  21. For computer programs and a general discussion of the Debye functions see: Yu. V. Cheban, S. F. Lau and B. Wunderlich, Colloid Polymer Sci., 260 (1982) 9.

    Article  Google Scholar 

  22. G. Zhang and B. Wunderlich, J. Thermal Anal., 47 (1996) 899.

    Article  CAS  Google Scholar 

  23. V. V. Tarasov, Dokl. Acad. Nauk. SSSR, 100 (1955) 307.

    CAS  Google Scholar 

  24. V. V. Tarasov, Compt. Rend. Acad. Sci. URSS, 54 (1946) 795.

    CAS  Google Scholar 

  25. V. V. Tarasov, Zh. Fiz. Khim., 27 (1953) 1430.

    CAS  Google Scholar 

  26. J. Grebowicz, H. Suzuki and B. Wunderlich, Polymer, 26 (1985) 561.

    Article  CAS  Google Scholar 

  27. H. S. Bu, W. Aycock and B. Wunderlich, Polymer, 28 (1987) 1165.

    Article  CAS  Google Scholar 

  28. S. Z. D. Cheng, S. Lim, L. H. Judovits and B. Wunderlich, Polymer, 28 (1987) 10.

    Article  CAS  Google Scholar 

  29. Y. Jim, J. Cheng, M. Varma-Nair, G. Liang, Y. Fu, B. Wunderlich, X. D. Xiang, R. Motovoy and A. K. Zettl, J. Phys. Chem., 96 (1992) 5151.

    Google Scholar 

  30. B. Wunderlich and Y. Jin, Thermochim. Acta, 226 (1993) 169.

    Article  CAS  Google Scholar 

  31. Y. Jin, A. Xenopoulos, J. Cheng, W. Chen, B. Wunderlich, M. Diack, C. Jin, R. Hettich, R. N. Compton and G. Guichon, Mol. Cryst., Liq. Cryst., 257 (1994) 235.

    Article  CAS  Google Scholar 

  32. D. E. Weeks and W. G. Harter, J. Chem. Phys., 90 (1989) 4744.

    Article  CAS  Google Scholar 

  33. R. E. Stanton and M. D. Newton, J. Phys. Chem., 92 (1988) 2141.

    Article  CAS  Google Scholar 

  34. J. Hilsenrath and J. J. Ziegler, Tables of the Einstein Functions, Natl. Bur. Standards Monograph 49, Washington, 1962 [By now any programmable pocket calculator can compute Eq. (4) faster and to higher precision than one can look up a table].

  35. J. A. Beattie, J. Math. Phys. (MIT), 6 (1926/27) 1.

    Google Scholar 

  36. J. E. Tucker and W. Reese, J. Chem. Phys., 46 (1967) 1388.

    Article  CAS  Google Scholar 

  37. D. W. Noid, M. Varma-Nair, B. Wunderlich and J. A. Darsey, J. Thermal Anal., 37 (1991) 2295.

    Article  CAS  Google Scholar 

  38. H. M. J. Smith, Phil. Trans., A241 (1948) 105.

    CAS  Google Scholar 

  39. W. V. Houston, Z. Naturforsch., 3a (1948) 607.

    CAS  Google Scholar 

  40. J. A. Young and J. V. Koppel, J. Chem. Phys., 42 (1965) 357.

    Article  CAS  Google Scholar 

  41. D. E. Weeks and W. G. Harter, Chem. Phys. Lett., 137 (1988) 366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyda, M., Bartkowiak, M. & Wunderlich, B. Computation of Heat Capacities of Solids Using a General Tarasov Equation. Journal of Thermal Analysis and Calorimetry 52, 631–656 (1998). https://doi.org/10.1023/A:1010188110516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010188110516

Navigation