Skip to main content
Log in

Optical Properties of Ag and Au Nanoparticles Dispersed within the Pores of Monolithic Mesoporous Silica

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The optical absorption of silver and gold nanoparticles dispersed within the pores of monolithic mesoporous silica upon annealing at elevated temperatures has been investigated. With decreasing particle size, the surface plasmon resonance position of the particles blue-shifts first and then red-shifts for silver/silica samples, but only red-shifts for gold/silica samples. This size evolution of the resonance position is completely different from that previously reported for fully embedded particles. We assume a local porosity at the particle/matrix interface, such that free surface of particles within the pores may be in contact with ambient air, and present a two-layer core/shell model to calculate the optical properties. These calculations also consider deviations from the optical constants of bulk matter to account for corresponding effects below about 10 nm particle size. From the good agreement between experimental results and model calculations, we conclude a peculiar particle/ambience interaction dominating the size evolution of the resonance. Because of the difference of core electron structure, the relative importance of the effects of local porosity and free surface, respectively, are different for silver and gold. For silver, the effect of the local porosity is stronger, but for gold the opposite is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aden A.L. & M. Kerker, 1951. Scattering of electromagnetic waves from two concentric spheres. J. Appl. Phys. 22, 1242–1245.

    Google Scholar 

  • Bhandari R., 1985. Scattering coefficients for a multilayered sphere: analytic expressions and algorithms. Appl. Opt. 24, 1960–1967.

    Google Scholar 

  • Borensztein Y., P. De Andres, R. Monreal, J. Lopez-Rios & F. Flores, 1986. Blue shift of the dipolar plasma resonance in small silver particles on an alumina surface. Phys. Rev. B 33, 2828–2830.

    Google Scholar 

  • Cai W., M. Tan, G. Wang & L. Zhang, 1996. Reversible transition between transparency and opacity for porous silica host dispersed with silver nanometer particles within its pores. Appl. Phys. Lett. 69, 2980–2982.

    Google Scholar 

  • Cai W. & L. Zhang, 1997. Synthesis and structural and optical properties of mesoporous silica containing silver nanoparticles. J. Phys.: Condens. Matter 9, 7257–7267.

    Google Scholar 

  • Cai W. & L. Zhang, 1998. Ambience-induced alternating change of optical absorption for the porous silica host loaded with silver nanometer particles. Appl. Phys. A 66, 419–422.

    Google Scholar 

  • Cai W., Y. Zhang, J. Jia & L. Zhang, 1998a. Semiconducting optical properties of silver/silica mesoporous composite. Appl. Phys. Lett. 73, 2709–2711.

    Google Scholar 

  • Cai W., L. Zhang, H. Zhong & G. He, 1998b. Annealing of mesoporous silica with silver nanoparticles within in ist pores from isothermal sorption. J. Mater. Res. 13, 2888–2895.

    Google Scholar 

  • Cai W., H. Hofmeister & M. Dubiel, 2001. Importance of lattice contraction in surface plasmon resonance shift for free and embedded silver particles. Eur. Phys. J. D 13, 245–253.

    Google Scholar 

  • Charlé K.P, F. Frank & W. Schulze, 1984. The optical properties of silver microcrystallites in dependence on size and the influence of the matrix environment. Ber. Bunsenges. Phys. Chem. 88, 350–354.

    Google Scholar 

  • Charlé K.P., W. Schulze & B. Winter, 1989. The size dependent shift of the surface plasmon absorption band of small spherical metal particles. Z. Phys. D 12, 471–475.

    Google Scholar 

  • Clippe P., R. Evrard & A.A. Lucas, 1976. Aggregation effect on the infrared absorption spectrum of small ionic crystals. Phys. Rev. B 14, 1715–1721.

    Google Scholar 

  • Cox D. M., R. Brickman, K. Creegan & A. Kaldor, 1991. Gold clusters – reactions and deuterium uptake. Z. Phys. D 19, 353–355.

    Google Scholar 

  • Edelstein A.S. & R.C. Cammarata, 1996. Nanomaterials: Synthesis, Properties and Applications. Institute of Physics Publishing, Bristol.

    Google Scholar 

  • Granqvist C.G. & O. Hunderi, 1977. Optical properties of ultra-fine gold particles. Phys. Rev. B 16, 3513–3534.

    Google Scholar 

  • Güttler A., 1952. Die Miesche Theorie der Beugung durch dielektrische Kugeln mit absorbierendem Kern und ihre Bedeutung für Probleme der interstellaren Materie und des atmosphärischen Aerosols. Ann. Phys. 11, 65–98.

    Google Scholar 

  • Hadjipanayis G.C. & R.W. Siegel, 1994. Nanophase Materials: Synthesis – Properties – Applications. Kluwer, Dordrecht. Halperin W.P., 1986. Quantum size effects in metal particles. Rev. Mod. Phys. 58, 533–606.

    Google Scholar 

  • Haruta M., 1997. Size-and support-dependency in the catalysis of gold. Catalysis Today 36, 153–166.

    Google Scholar 

  • Hilger A., N. Cüppers, M. Tenfelde & U. Kreibig, 2000. Surface and interface effects in the optical properties of silver nanoparticles. Eur. Phys. J. D 10, 115–118.

    Google Scholar 

  • Hövel H., S. Fritz, A. Hilger, U. Kreibig & M. Vollmer, 1993. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178–18188.

    Google Scholar 

  • Hosoya Y., T. Suga, T. Yanagawa & Y. Kurokawa, 1997. Linear and nonlinear optical properties of sol–gel-derived Au nanometer-particle-doped alumina. J. Appl. Phys. 81, 1475–1480.

    Google Scholar 

  • Hudson M. & C.A. Sequeira, 1993. Multifunctional mesoporous inorganic solids. Kluwer, Dordrecht.

    Google Scholar 

  • Hughes A.E. & S.C. Jain, 1979. Material colloids in ionic crystals. Adv. Phys. 28, 717–828.

    Google Scholar 

  • Iizuka Y., T. Tode, T. Takao, K. Yatsu, T. Takeuchi, S. Tsubota & M. Haruta, 1999. A kinetic and adsorption study of CO oxidation over unsupported fine gold powder and over gold supported on titanium dioxide. J. Catalysis 187, 50–58.

    Google Scholar 

  • Kilty P.A. & W.M. Sachtler, 1974. The mechanism of selective oxidation of ethylene to ethylene oxide. Catal. Rev. Sci. Eng. 10, 1–16.

    Google Scholar 

  • Kreibig U., 1977. Anomalous frequency and temperature dependence of the optical absorption of small gold particles. J. Physique 38, C2-97–C2-103.

    Google Scholar 

  • Kreibig U. & L. Genzel, 1985. Optical absorbtion of small metallic particles. Surf. Sci. 156, 678–700.

    Google Scholar 

  • Kreibig U. & M. Vollmer, 1995. Optical Properties of Metal Clusters. Springer Verlag, New York.

    Google Scholar 

  • Kreibig U., M. Gartz, A. Hilger & H. Hövel, 1998. Optical investigations of surfaces and interfaces of metal clusters. Adv. Met. Semicond. Clusters 4, 345–393.

    Google Scholar 

  • Lerme J., B. Palpant, B. Prevel, M. Pellarin, M. Treilleux, J.L. Vialle, A. Perez & M. Broyer, 1998a. Quenching of size effects in free and matrix-embedded silver clusters. Phys. Rev. Lett. 80, 5105–5108.

    Google Scholar 

  • Lerme J., B. Palpant, B. Prevel, E. Cottancin, M. Pellarin, M. Treilleux, J.L. Vialle, A. Perez & M. Broyer, 1998b. Optical properties of gold metal clusters: A time-dependent localdensity-approximation investigation. Eur. Phys. J. D4, 95–108.

    Google Scholar 

  • Liebsch A., 1993. Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals. Phys. Rev. B 48, 11317–11328.

    Google Scholar 

  • Meisel D., 1979. Catalysis of hydrogen production in irradiated aqueous solutions by gold sols. J. Am. Chem. Soc. 101, 6133–6135.

    Google Scholar 

  • Mie G., 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 25, 377–445.

    Google Scholar 

  • Nagata Y., Y. Mizukoshi, K. Okitsu & Y. Maeda, 1996. Sonochemical formation of gold particles in aqueous solution. Radiat. Res. 146, 333–338.

    PubMed  Google Scholar 

  • Okitsu K., Y. Mizukoshi, H. Bandow, Y. Maeda, T. Yamamoto & Y. Nagata, 1996. Formation of noble metal particles by ultrasonic irradiation. Ultrasonics Sonochem. 3, S249–S251.

    Google Scholar 

  • Oshima R., T.A. Yamamoto, Y. Mizukoshi, Y. Nagata & Y. Maeda, 1999. Electron microscopy of noble metal alloy nanoparticles prepared by sonochemical methods. NanoStruct. Mater. 12, 111–114.

    Google Scholar 

  • Palik E.D., 1985; 1991. Handbook of Optical Constants of Solids, Vols I and II. Academic Press, New York.

    Google Scholar 

  • Palpant B., B. Prevel, J. Lerme, E. Cottancin, M. Pellarin, M. Treilleax, A. Perez, J.L. Vialle & M. Broyer, 1998. Optical properties of gold clusters in the size range 2–4 nm. Phys. Rev. B 57, 1963–1970.

    Google Scholar 

  • Persson B.N.J., 1993. Polarizability of small spherical metal particles: influence of the matrix environment. Surf. Sci. 281, 153–162.

    Google Scholar 

  • Pireaux J.J., M. Chtaib, J.P. Delrue, P.A. Thiry, M. Liehr & R. Caudano, 1984. Electron spectroscopic characterization of oxygen adsorption on gold surfaces. Surf. Sci. 141, 211–232.

    Google Scholar 

  • Prutton M., 1983. Surface Physics, Chapter 6. Oxford Physics Series, Clarendon, Oxford.

    Google Scholar 

  • Sinzig J., U. Radtke, M. Quinten & U. Kreibig, 1993. Binary clusters: homogenous alloys and nucleus-shell structure. Z. Phys. D 26, 242–245.

    Google Scholar 

  • Sinzig J. & M. Quinten, 1994. Scattering and absorption by spherical multilayer particles. Appl. Phys. A 58, 157–162.

    Google Scholar 

  • Smithard M.A., 1973. Size effect on the optical and paramagnetic absorption of silver particles in a glass matrix. Solid State Commun. 13, 153–156.

    Google Scholar 

  • Verhoeven J.D., 1975. Fundamentals of Physical Metallurgy. John Wiley, New York.

    Google Scholar 

  • Westerhausen J., A. Henglein & J. Lilie, 1981. Radiationelectrochemistry of the colloidal gold microelectrode – hydrogen formation by organic free-radicals. Ber. Bunsenges. Phys. Chem. 85, 182–189.

    Google Scholar 

  • Yasuda T., H. Komiyama & K. Tanaka, 1987. Gas-sensitive electrical-conduction and its mechanism in a Ag/insulator system with locally discontinuous structure. Jpn. J. Appl. Phys. 26, 818–824.

    Google Scholar 

  • Zhou H., W. Cai & L. Zhang, 1999. Photoluminescence of indiumoxide nanoparticles dispersed within the pores of mesoporous silica. Appl. Phys. Lett. 75, 495–497

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hofmeister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, W., Hofmeister, H., Rainer, T. et al. Optical Properties of Ag and Au Nanoparticles Dispersed within the Pores of Monolithic Mesoporous Silica. Journal of Nanoparticle Research 3, 441–451 (2001). https://doi.org/10.1023/A:1012537817570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012537817570

Navigation