Skip to main content
Log in

Thermal and Mechanical Properties of Plastics Molded from Sodium Dodecyl Sulfate-Modified Soy Protein Isolates

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Soybean protein is a potential material for manufacturing of biodegradable plastics. The objective of this investigation was to characterize the thermal and mechanical properties of plastics made from sodium dodecyl sulfate (SDS)-modified soy proteins. Soy protein isolate (SPI) was prepared from defatted soy flour, modified with various concentrations of SDS, and then molded into plastics. The temperatures of denaturation of the modified soy protein increased at low SDS concentration and then decreased at high SDS concentration. At the same SDS concentration, the plastics molded from the modified soy proteins showed a similar temperature of denaturation, but a lower enthalpy of denaturation compared to the modified soy protein. Young's modulus of the plastics decreased as SDS concentration increased, and the tensile strength and strain at break of the plastics reached a maximum value at 1% SDS modification. Two glass transition temperatures were identified corresponding to the 7S and 11S globulins in SPI by dynamic mechanical analysis, and they decreased as SDS concentration increased. The SDS modification increased the water absorption of the plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. U. S. Environmental Protection Agency (1999) Characterization of Municipal SolidWaste in the United States: 1998 Update, Washington, DC, pp. 40–44.

  2. ASTM Handbook (1992) Standard Terminology Relating to Plastics, D883-92, American Society for Testing and Materials, Philadelphia, PA, pp. 325–334.

    Google Scholar 

  3. L. McCarthy-Bates (1993) Plast. World. 51, 22–27. SDS

    Google Scholar 

  4. S. Wang, H. J. Sue, and J. L. Jane (1996) Pure Appl. Chem. A33, 557–569.

    Google Scholar 

  5. I. Paetau, C. Z. Chen, and J. L. Jane (1994) Ind. Eng. Chem. Res. 33, 1821–1827.

    Google Scholar 

  6. X. Q. Mo, X. Z. Sun, and Y. Q. Wang (1999) J. Appl. Polym. Sci. 73, 2595–2602.

    Google Scholar 

  7. J. Jane and S. Wang (1996) US Patent 5,523,293.

  8. J. U. Otaigbe, H. Goel, and T. Babcock (1999) J. Elastomers Plastics 31, 56–71.

    Google Scholar 

  9. H. V. Pol and A. A. Ogale (2000) ANTEC 46, 1751–1755.

    Google Scholar 

  10. J. U. Otaigbe and D. O. Adams (1997) J. Environ. Polym. Degrad. 5, 199–208.

    Google Scholar 

  11. J. John and M. Bhattacharya (1999) Polym. Int. 48, 1165–1172.

    Google Scholar 

  12. S. Zhang, P. Mungara, and J. Jane (1998) Polym. Prepr. 39, 162–164.

    Google Scholar 

  13. I. Paetau, C. Z. Chen, and J. L. Jane (1994) J. Environ. Polym. Degrad. 2, 211–217.

    Google Scholar 

  14. C. H. Schilling, T. Babcock, S. Wang, and J. Jane (1995) J. Mater. Res. 10, 2197–2202.

    Google Scholar 

  15. Y. T.-P. Ly, L. A. Johnson, and J. Jane (1998) in D. L. Kaplan (Ed.), Biopolymers from Renewable Resources, Springer, New York, pp. 144–176.

    Google Scholar 

  16. W. J. Wolf (1970) J. Agr. Food Chem. 18, 969–976.

    Google Scholar 

  17. Y. V. Wu and G. E. Inglett (1974) J. Food Sci. 39, 218–225.

    Google Scholar 

  18. I. Nir, Y. Fekdman, A. Aserin, and N. Garti (1994) J. Food Sci. 59, 606–610.

    Google Scholar 

  19. N. S. Hettiarachchy, U. Kalapathy, and D. J. Myers (1995) J. Am. Oil Chem. Soc. 72, 1461–1464.

    Google Scholar 

  20. X. Z. Sun and K. Bian (1999) J. Am. Oil Chem. Soc. 76, 977–980. SDS.

    Google Scholar 

  21. W. N. Huang and X. Z. Sun (2000) J. Am. Oil Chem. Soc. 77, 101–104.

    Google Scholar 

  22. C. Tanford (1968) in C. B. Anfinsen, M. L. Anson, J. T. Edsall, and F. M. Richard (Eds.), Advances in Protein Chemistry, Academic Press, New York, pp. 121–281.

    Google Scholar 

  23. X. Q. Mo and X. Z. Sun (2000) J. Am. Oil Chem. Soc. 78, 867–872.

    Google Scholar 

  24. ASTM Standards D638-91 (1993) Standard Test Methods for Tensile Properties of Plastics, American Society for Testing and Materials, Philadelphia, pp. 161–173.

    Google Scholar 

  25. ASTM Standards D570-81 (Reapproved 1988) (1993) Standard Test Methods for Water Absorption of Plastics, American Society for Testing and Materials, Philadelphia, pp. 143–145.

    Google Scholar 

  26. N. K. D. Kella and M. S. N. Rao (1985) Int. J. Peptide Res. 25, 308–315.

    Google Scholar 

  27. B. R. Sureshchandra, A. G. Appu Rao, and M. S. Narasinga Rao (1987) J. Agric. Food Chem. 35, 244–247.

    Google Scholar 

  28. A. M. Hermansson (1978) J. Text. Stud. 9, 33–58.

    Google Scholar 

  29. Z. K. Zhong and X. S. Sun (2000) J. Appl. Polym. Sci. 81, 166–175.

    Google Scholar 

  30. A. Morales and J. L. Kokini (1997) Biotechnol. Prog. 13, 624–629. 1. U. S. Environmental Protection Agency (1999) Characterization

    Google Scholar 

  31. L. H. Sperling (1992) Introduction to Polymer Science, John Wiley & Sons, New York. pp. 303–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, X., Sun, X. Thermal and Mechanical Properties of Plastics Molded from Sodium Dodecyl Sulfate-Modified Soy Protein Isolates. Journal of Polymers and the Environment 8, 161–166 (2000). https://doi.org/10.1023/A:1015241609497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015241609497

Navigation