Skip to main content
Log in

Multisensor/Multicriteria Fire Detection: A New Trend Rapidly Becomes State of the Art

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

The detection performance of fire alarm systems has recently improved substantially with the development of multisensor/multicriteria detection technology, a new generation of products that derive various alarm and diagnostic criteria from a combination of input signals from sensors responding to different fire phenomena. In an actual case, the signals from a photoelectric smoke sensor and a temperature sensor were combined using modern techniques of signal analysis, such as neural networks and fuzzy logic, which by far exceed commonly used simple logic. The underlying algorithms are parametrized to allow application-specific adaptation of the fire alarm system response behavior.

Results from laboratory experiments and computer simulations, field tests, and a rapidly increasing number of real installations clearly demonstrate that systems using multisensor/multicriteria detection technology outperform systems that depend on single sensor inputs, such as ionization or photoelectric smoke detection or temperature sensing. Indeed, the results show that such systems can be adapted to respond to a substantially wider spectrum of fire phenomena, such as visible/invisible and black/white smoke, aerosols, and temperature, while remaining much less sensitive to deceptive phenomena that result from cigarette smoke, welding, spray aerosols, dust, humidity, and so on. This new technology not only contributes to improved life safety, it also reduces the probability of nuisance alarms.

In this paper, the principle building blocks that lead to the improved detection behavior will be outlined and results from actual installations will be presented. In particular, the effect of application-specific parametrization will be demonstrated. The performance of multisensor/multicriteria fire detection systems will also be compared to that of systems that depend on single sensor inputs only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wüthrich, A., Verteilte Datenverabeitung als Merklmal moderner Brandmeldeanlagen, Proc. AUBE'95 (Verlag Mainz, Aachen, Germany), 1995, p. 130.

    Google Scholar 

  2. CEN, European Committee for Standardization, rue Bréderode 2 B-1000 Brussels, Belgium.

  3. VSHSA (Verband Schweizerischer Hersteller von Sicherheitsanlagen), Alpenstrasse 20, CH-3052 Zollikofen, Alarmstatistik von Brandmeldeanlagen, Bern, May 1996.

    Google Scholar 

  4. von Tomkewitsch, R., “Brandschutzanlagen mit “‘verteilter Intelligenz,’” Das Pulsmelde-System, Tagungsbericht AUBE'82, (Uni Duisburg, Germany), 1982, p. 335.

    Google Scholar 

  5. Trinkl, W., Brandkenngrössen analog gemessen und analog übertragen, Proc. AUBE'89 (Verlag Mainz, Aachen, Germany), 1989, p. 319.

    Google Scholar 

  6. Scheidweiler, A., Verteilung der Intelligenz in zukünftigen Brandmeldesystemen, Tagungsbericht AUBE'82 (Uni Duisburg, Germany), 1982, p. 295.

    Google Scholar 

  7. Appleby, D., A Fire Detection System Using Distributed Processing (Verlag Mainz, Aachen, Germany), 1989, p. 101.

    Google Scholar 

  8. Thuillard, M., Fehlalarmreduktion durch den Einsatz von Fuzzy Logik bei Brandmeldern, 3 Aachener Fuzzy-Symposium, Oldenburg Verlag, 1993, p. 17.

  9. Thuillard, M., “New Methods for Reducing the Number of False Alarms in Fire Detection Systems,” Fire Technology, Volume 30,Number 2 (Second Quarter 1994), p. 250.

    Google Scholar 

  10. Thuillard, M., Computer-Assisted Choice of Testing Conditions During the Development of an Optical Beam Smoke Detector with Neurofuzzy, ELITE Foundation, Aachen, 1995, p. 1186.

    Google Scholar 

  11. Thuillard, M., Development of Fuzzy Inference Rules in a Linear Smoke Detector with a New NeuroFuzzy Method, Proc. AUBE'95 (Verlag Mainz Aachen, Germany), 1995, p. 329.

    Google Scholar 

  12. Nakanishi, S., and Nomura, J., Intelligent Fire Warning System Using Fuzzy Technology, Proc. AUBE'95 (Verlag Mainz, Aachen, Germany), 1995 p. 203.

    Google Scholar 

  13. Loepfe, M., Ryser, P., Tompkin, C., and Wieser D., Optische Eigenschaften von Brand-und Nichtbrandaerosolen, Proc. AUBE'95 (Verlag Mainz, Aachen, Germany), 1995, p. 394.

    Google Scholar 

  14. Ellwood, S. H., Analogue Optical/Heat Fire Detection, Proc. AUBE '89 (Verlag Mainz, Aachen, Germany), 1989, p. 229.

    Google Scholar 

  15. Ishii, H., Ono, T., Yamauchi, Y., and Ohtani, S., An Algorithm for Improving the Reliability of Detection with Processing of Multiple Sensors' Signal, Proc AUBE'89 (Verlag Mainz, Aachen, Germany), 1989, p. 245f.

    Google Scholar 

  16. Berger, H., Erfahrung mit Multisensor-/Mehrkriterien-Meldern, Proc. AUBE'95 (Verlag Mainz Aachen, Germany), 1995, p. 138.

    Google Scholar 

  17. Werner, J., Schlegel, M., and Bury, J. L., Einfluss von Algorithmen auf das Detektionsverhalten von Multisensor-Rauchmeldern in verschiedenen Umgebungen und Höhenlagen, Proc. AUBE'95 (Verlag Mainz, Aachen, Germany), 1995, p. 150.

    Google Scholar 

  18. Post, O., SIGMAEXPERT—Kommunikative Multisensoren für Gefahrenmeldeanlagen, Proc. AUBE'95 (Verlag Mainz, Aachen, Germany), 1995, p. 308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfister, G. Multisensor/Multicriteria Fire Detection: A New Trend Rapidly Becomes State of the Art. Fire Technology 33, 115–139 (1997). https://doi.org/10.1023/A:1015343000494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015343000494

Keywords

Navigation