Skip to main content
Log in

Factors affecting the adsorption of stabilisers on to carbon black (flow micro-calorimetry and FTIR studies) Part I Primary phenolic antioxidants

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The surface activity of different types of carbon black with phenolic antioxidants is examined using flow micro-calorimetry (FMC), X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared spectroscopy (FTIR). Significant differences in both the overall adsorption activity and the levels of probe adsorption are observed. Differences in behaviour between types of carbon black are evident and show that the specific surface area is not the most important factor affecting the adsorption activity, but also the chemical nature of its surface. Essentially, two factors were found to affect the behaviour of phenolic stabilisers: Phenolic hydroxyl and ester groups were found to form the strongest interactions with carbon black. Furthermore, steric hinderance of phenolic hydroxyls by alkyl groups is the main factor which influences adsorption activity. In order to characterise different carbon blacks, FTIR and XPS analysis have been used in an attempt to determine the nature of functional groups present on the surface of the carbon blacks. FTIR analysis also shows that some adsorbed antioxidants on the surface of the carbon black could be successfully detected. This provides valuable information regarding the adsorption mechanisms on to carbon black surfaces. Other techniques included thermogravimetric analysis (TGA), N2 BET adsorption studies and Karl Fisher analysis. The latter were performed in order to determine differences in the volatile and water contents, respectively, of the carbon black samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bandyopadhyay and D. K. Tripaty, J. Appl. Sci. 58 (1995) 719.

    Google Scholar 

  2. J. Wolfschewenger, A. Hauer, M. G. Gahleitner and W. Nei ß l, in Proceedings Eurofillers' 97 (British Plastics Federation, Manchester, UK, 1997) p. 375.

    Google Scholar 

  3. C. M. Liauw, A. Childs, N. S. Allen, M. Edge, K. R. Franklin and D. G. Collopy, Polym. Degrad. Stab. 65 (1999) 207.

    Google Scholar 

  4. A. P. D'silva, Carbon 36 (1998) 1317.

    Google Scholar 

  5. J. B. Donnet, R. C. Bansal and M. J. Wang, “Carbon Black, Science and Technology” (Marcel Dekker Inc., New York, 1993).

    Google Scholar 

  6. M. H. Polley, W. D. Schaeffer and W. R. Smith, J. Am. Chem. Soc. 73 (1951) 2161.

    Google Scholar 

  7. M. J. Wang, S. Wolff and J. B. Donnet, Rubb. Chem. Technol. 64 (1991) 714.

    Google Scholar 

  8. A. I. Medalia, “Carbon Black” (Medalia Associates, Inc., Mass., USA, 1991).

    Google Scholar 

  9. J. A. MenÉndez, Thermochimica Acta 312 (1998) 79.

    Google Scholar 

  10. A. J. Grozeck, Proc. Roy. Soc. London A314 (1970) 473.

    Google Scholar 

  11. Idem., Carbon 6 (1987) 717.

    Google Scholar 

  12. A. J. Grozeck and G. Aharoni, Langmuir 15 (1999) 5956.

    Google Scholar 

  13. F. M. Fowkes, “Acid-Base Interactions,” edited by K. L. Mittal and H. R. Anderson (VPS, Zeist, The Netherlands, 1991).

    Google Scholar 

  14. S. T. Joslin and F. M. Fowkes, IEC Prod. R&D 24 (1985) 369.

    Google Scholar 

  15. D. P. Ashton and R. N. Rothon, “Controlled Interfaces in Composite Materials,” edited by H. Ishida (Elsevier, Amsterdam, 1990).

    Google Scholar 

  16. C. M. Liauw, A. Childs, N. S. Allen, M. Edge, K. R. Franklin and D. G. Collopy, Polym. Degrad. Stab. 63 (1999) 391.

    Google Scholar 

  17. R. N. Rothon, “Particulate Filled Polymer Composites,” edited by R. N. Rothon (Longman Scientific, London, UK, 1996).

    Google Scholar 

  18. C. M. Liauw and S. J. Read, Confidential Report to Cabot Corporation, Billerica, Boston, USA, 1998.

  19. C. M. Liauw, R. N. Rothon, S. J. Hurst and G. C. Lees, Composite Interfaces 5 (1998) 503.

    Google Scholar 

  20. Cabot North American Technical Report S-136, Cabot Corporation, 1999.

  21. H. P. Boehm, Carbon 32 (1994) 759.

    Google Scholar 

  22. R. H. Bradley, I. Sutherland and E. Sheng, J. Colloid Interface Sci. 179 (1996) 561.

    Google Scholar 

  23. I. Sutherland, E. Sheng and R. H. Bradley, J. Mater. Sci. 31 (1996) 5651.

    Google Scholar 

  24. J. M. O'reilly and R. A. Mosher, Carbon 21 (1983) 47.

    Google Scholar 

  25. E. Papirer and R. Lacroix, ibid. 32 (1994) 1341.

    Google Scholar 

  26. B. WesslÉn, M. Kober, C. Freijlarsson, A. Ljungh and M. Paulsson, Biomaterials 15 (1994) 278.

    PubMed  Google Scholar 

  27. E. Österberg and K. BergstrÖm, Appl. Surface Sci. 64 (1995) 197.

    Google Scholar 

  28. T. Asakawa, K. Ogino and K. Yamabe, Bull. Chem. Soc. Japan 58 (1985) 2009.

    Google Scholar 

  29. T. J. Fabish and D. E. Schleifer, Carbon 22 (1984) 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, J.M., Allen, N.S., Edge, M. et al. Factors affecting the adsorption of stabilisers on to carbon black (flow micro-calorimetry and FTIR studies) Part I Primary phenolic antioxidants. Journal of Materials Science 36, 2885–2898 (2001). https://doi.org/10.1023/A:1017998202931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017998202931

Keywords

Navigation