Skip to main content
Log in

Simulations of friction anisotropy on ordered organic monolayer

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A method of molecular dynamics is used to investigate friction anisotropy observed on a hexagonally packed organic monolayer of straight-chain molecules, which tilt in a specific direction. A rigid gold slider with a single atomic protuberance is used as a model of a typical atomic force microscope tip apex. The friction anisotropy is observed at 50 K, which is below the melting point of rotation around a long axis of the molecule. The anisotropic frictional behavior is that sliding in directions normal to the direction of the collective tilt of the molecules results in the maximum friction force. The origin of the anisotropy is attributed to anisotropy in lateral compliance in the monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Carpick and M. Salmeron, Chem. Rev. 97 (1998) 1163.

    Google Scholar 

  2. J. Colchero, E. Meyer and O. Marti, in: Handbook of Micro/Nano Tribology, 2nd Ed., ed. B. Bhushan (CRC Press, Boca Raton, 1999) p. 273.

    Google Scholar 

  3. E. Meyer, R. Overney, D. Brodbeck, L. Howald, R. Lüthi, J. Frommer and H.-J. Güntherodt, Phys. Rev. Lett. 69 (1992) 1777.

    Google Scholar 

  4. R.M. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Lüthi, L. Howald, H.-J. Güntherodt, M. Fujihira, H. Takano and Y. Gotoh, Nature 359 (1992) 133.

    Google Scholar 

  5. C.M. Mate, G.M. McClelland, R. Erlandsson and S. Chiang, Phys. Rev. Lett. 59 (1987) 1942.

    Google Scholar 

  6. G. Meyer and N.M. Amer, Appl. Phys. Lett. 57 (1990) 2089.

    Google Scholar 

  7. O. Marti, J. Colchero and J. Mlynek, Nanotechnology 1 (1990) 141.

    Google Scholar 

  8. R.M. Overney, H. Takano, M. Fujihira, W. Paulus and H. Ringsdorf, Phys. Rev. Lett. 72 (1994) 3546.

    Google Scholar 

  9. M. Liley, D. Gourdon, D. Stamou, U. Meseth, T.M. Fischer, C. Lautz, H. Stahlberg, H. Vogel, N.A. Burnham and C. Duschl, Science 280 (1998) 273.

    Google Scholar 

  10. U. Gehlert, J. Fang and C.M. Knobler, J. Phys. Chem. B 102 (1998) 2614.

    Google Scholar 

  11. M. Hirano, K. Shinjo, R. Kaneko and Y. Murata, Phys. Rev. Lett. 67 (1991) 2642.

    Google Scholar 

  12. J. Kerssemmakers and J.T.M. De Hosson, Appl. Phys. Lett. 67 (1995) 347.

    Google Scholar 

  13. H. Bluhm, U.D. Schwarz and R. Wiesendanger, Phys. Rev. B 57 (1998) 161.

    Google Scholar 

  14. J.A. Harrison, S.J. Stuart and D.W. Brenner, in: Handbook of Micro/ Nano Tribology, 2nd Ed., ed. B. Bhushan (CRC Press, Boca Raton, 1999) p. 525.

    Google Scholar 

  15. G.A. Tomlinson, Phil. Mag. 77 (1929) 905.

    Google Scholar 

  16. F.C. Frenkel and T. Kontorova, Zh. Eksp. Teor. Fiz. 8 (1938) 1340.

    Google Scholar 

  17. U. Landman, W.D. Luedtke and M.W. Ribarsky, J. Vac. Sci. Technol. A 7 (1989) 2829.

    Google Scholar 

  18. J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, Phys. Rev. B 46 (1992) 9700.

    Google Scholar 

  19. J.N. Glosli and G.M. McClelland, Phys. Rev. Lett. 70 (1993) 1960.

    Google Scholar 

  20. K.J. Tupper and D.W. Brenner, Thin Solid Films 253 (1994) 185.

    Google Scholar 

  21. J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, J. Phys. Chem. 97 (1993) 6573.

    Google Scholar 

  22. J.A. Harrison, R.J. Colton, C.T. White and D.W. Brenner, Wear 168 (1993) 127.

    Google Scholar 

  23. J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, Thin Solid Films 260 (1995) 205.

    Google Scholar 

  24. A. Koike and M. Yoneya, J. Chem. Phys. 105 (1996) 6060.

    Google Scholar 

  25. A. Koike and M. Yoneya, Langmuir 13 (1997) 1718.

    Google Scholar 

  26. T. Bonner and A. Baratoff, Surf. Sci. 377-379 (1997) 1082.

    Google Scholar 

  27. A.B. Tutein, S.J. Stuart and J.A. Harrison, Langmuir 16 (2000) 291.

    Google Scholar 

  28. M. Cieplak, E.D. Smith and M.O. Robbins, Science 265 (1994) 1209.

    Google Scholar 

  29. M.O. Robbins and E.D. Smith, Langmuir 12 (1996) 4543.

    Google Scholar 

  30. J.B. Sokoloff, Phys. Rev. B 42 (1990) 760.

    Google Scholar 

  31. T. Ohzono, J.N. Glosli and M. Fujihira, Jpn. J. Appl. Phys. 37 (1998) 6335.

    Google Scholar 

  32. T. Ohzono, J.N. Glosli and M Fujihira, Jpn. J. Appl. Phys. 38 (1999) L 675.

    Google Scholar 

  33. M. Fujihira and T. Ohzono, Jpn. J. Appl. Phys. 38 (1999) 3918.

    Google Scholar 

  34. M. Hirano and K. Shinjo, Phys. Rev. B 41 (1990) 11837.

    Google Scholar 

  35. P. van der Ploeg and H.J.C. Berendsen, J. Chem. Phys. 76 (1982) 3271.

    Google Scholar 

  36. J.P. Ryckaert and A. Bellemans, Chem. Phys. Lett. 30 (1975) 123.

    Google Scholar 

  37. L.J. Dunfield, A.W. Burgess and H.A. Scherage, J. Phys. Chem. 82 (1978) 2609.

    Google Scholar 

  38. J. Hauntman and M.L. Klein, J. Chem. Phys. 91 (1989) 4994.

    Google Scholar 

  39. T.K. Xia, J. Ouyang, M.W. Ribarsky and U. Landman, Phys. Rev. Lett. 69 (1992) 1967.

    Google Scholar 

  40. M. Fujihira, in: Micro/Nanotribology and Its Applications, ed. B. Bhushan (Kluwer Academic, Dordrecht, 1997) p. 239.

    Google Scholar 

  41. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Dinola and J.R. Haak, J. Chem. Phys. 81 (1984) 3684.

    Google Scholar 

  42. I.L. Singer, S. Fayeulle and P.D. Ehni, Wear 149 (1991) 375.

    Google Scholar 

  43. T. Ohzono and M. Fujihira, to be submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohzono, T., Fujihira, M. Simulations of friction anisotropy on ordered organic monolayer. Tribology Letters 9, 63–67 (2000). https://doi.org/10.1023/A:1018804410641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018804410641

Navigation