Skip to main content
Log in

Mixing and Characterization of Nanosized Powders: An Assessment of Different Techniques

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The objective of this paper was to gain an understanding of the mixing and characterization of nanosized powders. Three different nanosized material systems were selected based on their physical and chemical properties. Mixing experiments of the selected nanopowders were performed using a variety of environmentally friendly dry powder processing devices and the rapid expansion of supercritical CO2 suspensions (RESS process) and compared with solvent-based methods coupled with ultrasonic agitation. A number of imaging techniques, including FESEM, AFM, TEM, EELS and EDS were used to characterize the degree of mixing or homogeneity of the mixtures obtained.

The results indicate that only some of the imaging techniques are capable of determining the quality of nanoparticle mixing, depending on the physical and chemical properties of the nanopowders. For example, field emission scanning electron microscope (FESEM) is suitable for characterizing powder mixtures having a distinct difference in particle shape, or with a large difference in atomic number of the metallic element of the two constituents. Only electron energy loss spectroscopy (EELS) was able to fully characterize nanopowder mixtures of SiO2 and TiO2 at the nanoscale. Energy dispersive X-ray spectroscopy (EDS) provided information on mixing quality, but only on a scale of about 1 μm. The results also show that solvent-based mixing methods coupled with ultrasonic agitation, and RESS generally perform better than dry powder processing systems, with the exception of the hybridizer, in generating a homogeneous mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ajayan P.M., 1995. Carbon nanotubes and nanocomposites. Fullerene Sci. Technol. 3(3), 119.

    Google Scholar 

  • Ajayan P.M., Ph. Redlich &; M. Rule, 1997. Structure of carbon nanotube based nanocomposites. J. Microscopy 185, 275.

    Google Scholar 

  • Alessi P., A. Cortesi, I. Kikic, N.R. Forster, S.J. Macnaughton &; I. Colombo, 1996. Particle production of steroid drugs using supercritical processing. Ind. Eng. Chem. Res. 35, 4718-4726.

    Google Scholar 

  • Babcock K.L. &; C.B. Prater, 1998</del>. </del>Phase Imaging: Beyond Topography. Digital Instruments, Inc., Rev. 4.

  • Brone D. &; F.J. Muzzio, 1998. Enhanced mixing in double-cone blenders. Powder Technol. 110(3), 179-189.

    Google Scholar 

  • Brone D., A. Alexander &; F.J. Muzzio, 1998. Quantitative characterization of mixing of dry powder in V-blenders. AIChE J. 44, 271-278.

    Google Scholar 

  • Carter S.A., J.C. Scott &; P.J. Broack, 1997. Enhanced luminance in polymer composite light emitting device. Appl. Phys. Lett. 71, 1145-1147.

    Google Scholar 

  • Chen J., H. Herman &; C.C. Huang, 1997. A preliminary model for mechanofusion powder processing. KONA 15, 113-120.

    Google Scholar 

  • Dai H., E.W. Wong, Y.Z. Lu, S. Fan &; C.M. Lieber, 1995. Synthesis and characterization of carbide nanorods. Nature 375, 769.

    Google Scholar 

  • Danckwerts P.V., 1953. Theory of mixture and mixing. Research 6, 355-361.

    Google Scholar 

  • Endo Y., Sh. Hasebe &; Y. Kousaka, 1997. Dispargation of aggregates of the powder by acceleration in an air stream and its application to the evaluation of adhesion between particles. Powder Technol. 91, 25-30.

    Google Scholar 

  • Fan L.T., Y.M. Chen &; F.S. Lai, 1990. Recent development in solids mixing. Powder Technol. 61, 255-278.

    Google Scholar 

  • Fokema M.D., A.J. Zarur &; J.Y. Ying, 2000. Lean-Burn natural gas engine exhaust remediation using nanostructured catalysts and coatings. In: Chow G.-M., Ovid'ko I.A. and Tsakalakos T. eds. Nanostructured Films and Coatings. Kluwer, Dordrecht, the Netherlands, pp. 355-365.

    Google Scholar 

  • Friedbacher G., P.K. Hansma, E. Ramli &; G.D. Stucky, 1991. Imaging powders with the atomic force microscope: From biominerals to commercial materials. Science 253, 1261-1263.

    Google Scholar 

  • Friedlander S.K., 1999. Polymer-like behavior of inorganic nanoparticle chain aggregates. J. Nanoparticle Res. 1, 9-15.

    Google Scholar 

  • Goldstein J.I., D.E. Newbury, P. Echlin &; D.C. Joy, 1992. Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists. 2nd edn., pp. 189-230.

  • Gross K.J., P. Spatz, A. Zuttel &; L. Schlapbach, 1996. Mechanically milled Mg composites for hydrogen storage: the transition to a steady-state composition. J. Alloys and Compounds 240, 206-213.

    Google Scholar 

  • Gulliver E., R.E. Riman &; V.A. Greenhut, 1997. Mixedness engineering for advanced multicomponent materials. Int. J. Powder Metallurgy 33, 29-36.

    Google Scholar 

  • Hamada K. &; M. Senna, 1995. Kagaku Kogaku Ronbunshu 21, 334.

    Google Scholar 

  • Hamada K. &; M. Senna, 1996. Mechanochemical effects on the properties of starting mixtures for PbTiO3 ceramics by using a novel grinding equipment. J. Mater. Sci. 31, 1925-1928.

    Google Scholar 

  • Harnby N., 1978. Statistics as an aid to powder mixing. International Symposium on Mixing, Faculte Polytechnique de Mons, Feb. 21-25, paper D3.

  • Hendrickson W.A. &; J. Abbott, 1999. US Patent: 5962082.

  • Hill K.M., J.F. Gilchrist, J.M. Ottino, D.V. Khakhar &; J.J. McCarthy, 1999. Mixing of granular materials: a test-bed dynamical system for pattern formation. Int. J. Bifur. Chaos 9(8), 1467-1484.

    Google Scholar 

  • Honda H., M. Kimura, F. Honda, T. Matsuno &; M. Koishi, 1994. Preparation of monolayer coated powder by dry impact blending process utilizing mechanochemical treatment. Colloids Surf. A: Physicochem. Eng. Aspects 82, 117-128.

    Google Scholar 

  • Honda H., T. Matsuno &; M. Koishi, 1988. J. Soc. Powder Technol. Jpn. 25, 597.

    Google Scholar 

  • Imanaka N., J. Kohler &; M. Toshiyuki, 2000. Inclusions of nanometer-sized Al2O3 particles in a crystalline (Sc,Lu)2(WO4)3 matrix. J. Am. Ceram. Soc. 83, 427-429.

    Google Scholar 

  • Ishizaka T., H. Honda &; M. Koishi, 1993. Drug dissolution from indomethacin-starch hybrid powders prepared by dry blending method. J. Pharm. Pharmacol. 45, 770-774.

    Google Scholar 

  • Kaye B.H., 1997. Powder Mixing. Chapman &; Hall, pp. 19-35, 77-131.

  • Kear B.H. & G. Skandan, 1997. Nanostructured bulk materials: synthesis, processing, properties and performance. In: Seigel R.W., Hu E. and Reco M.C. eds. Proceedings of R&D Trends in Nanoparticles, Nanostructured Materials and Nanodevices in the United States, pp. 103-117.

  • Kear B.H. &; G. Skandan, 1999. Overview: status and current developments in nanomaterials. Int. J. Powder Metallurgy 35(7), 35-37.

    Google Scholar 

  • Koishi M., H. Honda, T. Ishizaka, T. Matsuno, T. Katano &; K. Ono, 1987. Chimicaoggi 5, 43.

    Google Scholar 

  • Kristensen H.G., 1996. Particle agglomeration in high shear mixer. Powder Technol. 88, 197-202.

    Google Scholar 

  • Kwak S.Y., 1994. Determination of microphase structure and scale of mixing in poly-epsilon-caprolactone (PCL)/poly (vinylchloride) (PVC) blend by high-resolution solid-state 13C-NMR spectroscopy with magic angle spinning and cross polarization. J. Appl. Polym. Sci. 53(13), 1823-1832.

    Google Scholar 

  • Lacey P.M.C., 1954. Developments in the theory of particulate mixing. J. Appl. Chem. 4, 257.

    Google Scholar 

  • Maser W.K., I. Lukyanchuk, P. Bernier, P. Molini, S. Lefrant, Ph. Redlich &; P.M. Ajayan, 1997. Superconducting RNi2B2C (R = Y, Lu) nanoparticles: size effects and weak links. Adv. Mater. 9, 503.

    Google Scholar 

  • Moser W.R., J.E. Sunstrom IV &; B. MarshikGuerts, 1996. The synthesis of nanostructured pure phase catalysts by hydrodynamic cavitation. In: Moser W.R. ed. Advanced Catalysts and Nanostructured Materials. Academic Press, pp. 285-305.

  • Myers D., 1999. Surfaces, Interfaces, and Colloids: Principles and Applications. 2nd edn. Wiley-VCH, pp. 40-67.

  • Myers K.J., M.F. Reeder, D. Ryan &; G. Daly, 1999. Get a fix on high-shear mixing. Chem. Eng. Prog. Nov. 1999, pp. 33-42.

    Google Scholar 

  • Ottino J.M. &; D.V. Khakhar, 2000. Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55-91.

    Google Scholar 

  • Parent J.O.G., J. Iyengar &; H. Henein, 1993. Fundamentals of dry powder blending for metal matrix composites. Int. J. Powder Metallurgy 29, 353-366.

    Google Scholar 

  • Pfeffer R., R. Dave, D.Wei &; M. Ramlakhan, 2001. Synthesis of engineered particulates with tailed properties using dry particle coating. Powder Technol. 117, 40-67.

    Google Scholar 

  • Pierre A.C., 1998. Introduction to Sol-Gel Processing. In: Lisa Klein ed. The Kluwer International Series in Sol-Gel Processing: Technology and Applications. Kluwer Academic Publishers, Boston/Dordrecht/London, pp. 220-247.

    Google Scholar 

  • Poux M., P. Fayolle, J. Bertrand, D. Bridoux &; J. Bousquet, 1991. Powder mixing: some practical rules applied to agitated systems. Powder Technol. 68(3), 213-234.

    Google Scholar 

  • Prica M., K. Kendall &; S.A. Markland, 1998. Atomic force microscope study of ceramic powder compacts during drying. J. Am. Ceram. Soc. 81(3), 541-548.

    Google Scholar 

  • Qiu S., J. Dong &; G. Chen, 2000. Synthesis of CeF3 nanoparticles from water-in-oil microemulsions. Powder Technol. 113, 9-13.

    Google Scholar 

  • Ramlakhan M., C.-Y. Wu, S. Watano, R.N. Dave &; R. Pfeffer, 2000. Dry particle coating using magnetically assisted impaction coating (MAIC): modification of surface properties and optimization of system and operating parameters. Powder Technol. 112, 137-148.

    Google Scholar 

  • Reverchon E, G. Donsi &; D. Gorgoglione, 1993. Salicylic acid solubilization in supercritical CO2 and its micronization by RESS. J. Supercrit. Fluids 6(4), 241-248.

    Google Scholar 

  • Rhodes M., 1998. Introduction to Particle Technology. John Willey &; Sons, West Sussex, England, pp. 223-235.

    Google Scholar 

  • Roco M.C., 1999. Nanoparticles and nanotechnology research. J. Nanoparticle Res. 1(1), 1-6.

    Google Scholar 

  • Rumpf H., 1962. In: Krepper W.A. ed. Agglomeration. Wiley, New York, p. 379.

    Google Scholar 

  • Sheehan P.E. &; C.M. Lieber, 1996. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 272, 1158-1161.

    Google Scholar 

  • Sheka E., V. Khavryutchenko &; E. Nikitina, 1999. From molecules to particles: quantum-chemical view applied to fumed silica. J. Nanoparticle Res. 1, 71-81.

    Google Scholar 

  • Siegel R.W., 1999. In: Siegel R.W., Hu E. and Reco M.C. eds. Nanostructure Science and Technology: A Worldwide Study. WTEC, Loyola College in Maryland, pp. 1-14.

  • Singh R.K., A. Ata, J. Fitz-Gerald &; W. Hendrickson, 1997. Dry coating method for surface modification of particulates. In: Sudarshan T.S., Khor K.A. and Jeandin M. eds. Surface Modification Technology X. The Institute of Materials, London.

    Google Scholar 

  • Suslick K.S., 1990. Sonochemistry. Science 247, 1439-1445.

    Google Scholar 

  • Suslick K.S., 1995. Applications of ultrasound to materials chemistry. MRS Bulletin, April, pp. 29-34.

  • Suslick K.S., D.A. Hammerton &; R.E. Cline Jr., 1986. The sonochemistry hot spot. J. Am. Chem. Soc. 108, 5641.

    Google Scholar 

  • Tanno K., T. Onagi &; M. Naito, 1994. Preparation of steel/zirconia composite particles with a multiphase coating layer. Adv. Powder Technol. 5(4), 393-405.

    Google Scholar 

  • Thiel W.J. &; P.L. Stephenson, 1982. Assessing the homogeneity of an ordered mixture. Powder Technol. 31, 45-50.

    Google Scholar 

  • Tom J.W. &; P.G. Debenedetti, 1991. Formation of bioerodiable polymeric microspheres and microparticles by rapid expansion of supercritical solutions. Biotechnol. Prog. 7, 403-411.

    Google Scholar 

  • Tom J.W., X. Kwauk, S.-D. Yeo &; P.G. Debenedetti, 1993. Rapid expansion of supercritical solutions (RESS): fundamentals and applications. Fluid Phase Equil. 82, 311.

    Google Scholar 

  • Trudeau M.L. &; J.Y. Ying, 1996. Nanocrystalline materials in catalysis and electrocatalysis: structure tailoring and surface reactivity. Nanostr. Mater. 7(1/2), 245-258.

    Google Scholar 

  • Turk M., 1999. Formation of small organic particles by RESS: experimental and theoretical investigations. J. Supercrit. Fluids 15, 79-89.

    Google Scholar 

  • Verkhovluyk T.V., 1993. Determination of homogeneity of some composite materials. Ukrain. Khimi. Zh. 59, 3.

    Google Scholar 

  • Wang R.H. &; L.T. Fan, 1976. Ind. Eng. Chem. Process Dev. 15, 381.

    Google Scholar 

  • Wang Y.C., T.M. Chou &; M. Libera, 1997. Transmission electron holography of silicon nanosphere with surface oxide layers. Appl. Phys. Lett. 70(10), 1296-1298.

    Google Scholar 

  • Weinekotter R. &; H. Gericke, 2000. Mixing of Solids. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 15-34.

    Google Scholar 

  • Williams, D.B. &; C.B. Carter, 1996. Transmission Electron Microscopy: A Textbook for Materials Science. Vol. 3, Plenum Press, New York.

    Google Scholar 

  • Williams J.C., 1990. Mixing and segregation in powders. In: Rhodes M. ed. Principles of Powders Technology. John Wiley &; Sons, Chichester, p. 71.

    Google Scholar 

  • Wittborn J., K, Rao &; J. Nogues, 2000. Magnetic domain and domain-wall imaging of sub-micron Co dots by probing the magnetostrictive response using atomic force microscopy. Appl. Phys. Lett. 76(20), 2931-2933.

    Google Scholar 

  • Ying J.Y., 1997. Nanoparticle synthesis for catalytic applications. In: Proceedings of the Joint National Science Foundation-National Institute of Standards and Technology Conference on 'Nanoparticles: Synthesis, Processing into Functional Nanostructures, and Characterization'. National Science Foundation, Arlington, Virginia, pp. 131-137.

    Google Scholar 

  • Yokoyama T., K. Urayama, M. Naito, M. Kato &; T. Yokoyama, 1987. The angmill mechanofusion system and its applications. KONA 5, 59-67.

    Google Scholar 

  • York P., 1999. Strategies for particle design using supercritical fluid technologies. Pharmaceut. Sci. Technol. Today 2, 430-440.

    Google Scholar 

  • Zhang Z., C.-C.Wang, R. Zakaria &; J.Y. Ying, 1998. Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 102(52), 10871-10878.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, D., Dave, R. & Pfeffer, R. Mixing and Characterization of Nanosized Powders: An Assessment of Different Techniques. Journal of Nanoparticle Research 4, 21–41 (2002). https://doi.org/10.1023/A:1020184524538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020184524538

Navigation