Skip to main content
Log in

Lignocellulose biodegradation: Fundamentals and applications

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocelluloses are the building blocks of allplants and are ubiquitous to most regions ofour planet. Their chemical properties make it asubstrate of enormous biotechnological value.The basic chemistry of cellulose,hemicellulose, and lignin has a profound effecton lignocellulose tertiary architecture. Theseintricate associations constitute physical andchemical barriers to lignocellulose utilizationand biodegradation in natural and man-madeenvironments. Overcoming these barriers is thekey to unlocking the commercial potential oflignocellulose. Understanding lignocellulosedegradation under natural conditions forms thebasis of any lignocellulose-based application.A variety of microorganisms and mechanisms areinvolved in the complete biodegradation oflignocellulose in natural environments rangingfrom soil and rumen ecosystems to the termitehindgut. The primary objective oflignocellulose pretreatment by the variousindustries is to access the potential of thecellulose and hemicellulose encrusted by ligninwithin the lignocellulose matrix. Currentworking technologies based on the principles ofsolid-state fermentation (SSF) are brieflyreviewed. The use of unsterile lignocellulosicsfor bioremediation purposes holds promise forcost-effective environmental clean-upendeavors. Novel lignocellulose-basedapplications have found functionality intextile, biological control, and medicalresearch fields and might be exploited there inthe near future. Ultimately, lignocellulosewill probably accompany man to his voyages intospace for interest in this field isintensifying. Therefore, proper management oflignocellulose biodegradation and utilizationcan serve to improve the quality of theenvironment, further man's understanding of theuniverse, and ultimately change local economiesand communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agosin E & Odier E (1985) Solid-state fermentation, lignin degradation and resulting digestibility of wheat straw fermented by selected white-rot fungi, Appl. Microbiol. Biotechnol. 21: 397-403

    Google Scholar 

  • Akin DE, Rigsby LL, Sethuraman A, Morrison III WH, Gamble GR & Eriksson KEL (1995) Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Appl. Environ. Microbiol. 61: 1591-1598

    Google Scholar 

  • Antai SP & Crawford DL (1981) Degradation of softwood, hardwood, and grass lignocelluloses by two Streptomyces strains. Appl. Environ. Microbiol. 42: 378-380

    Google Scholar 

  • Aristidou A & Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11: 187-198

    Google Scholar 

  • Arnold JL, Knapp JS & Johnson CL (2000) The use of yeasts to reduce the polluting potential of silage effluent. Wat. Res. 34: 3699-3708

    Google Scholar 

  • Aucamp A, Danckwerts JE (1989) Grazing Management: A Strategy for the Future. Introduction' National Department of Agriculture, Pretoria, South Africa

    Google Scholar 

  • Betts WB, Dart RK, Ball AS & Pedlar SL (1991) Biosynthesis and structure of lignocellulose. In: Betts WB (Ed) Biodegradation: Natural and Synthetic Materials (pp 139-155). Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Blanchette RA, Shaw CG & Cohen AL (1978) A SEM study of the effects of bacteria and yeasts on wood decay by brown-and white-rot fungi. Scan. Elec. Micros. 2: 61-68

    Google Scholar 

  • Borneman WS, Hartley RD, Morrison WH, Akin DE & Ljungdahl LG (1990) Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl. Microbiol. Biotechnol. 33: 345-351

    Google Scholar 

  • Breen A & Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Curr. Opin. Biotechnol. 10: 252-258

    Google Scholar 

  • Chamberlain K & Crawford DL (2000) Thatch biodegradation and antifungal activities of two lignocellulolytic Streptomyces strains in laboratory cultures and in golf green turfgrass. Can. J. Microbiol. 46: 550-558

    Google Scholar 

  • Chen J, Fales SL, Varga GA & Royse DJ (1995) Biodegradation of cell wall components of maize stover colonized by white-rot fungi and resulting impact on in-vitro digestibility. J. Sci. Food Agric. 68: 91-98

    Google Scholar 

  • Chesson A (1981) Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms. J. Sci. Food Agric. 32: 745-758

    Google Scholar 

  • Colberg PJ (1988) Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp 333-372). John Wiley & Sons, New York USA

    Google Scholar 

  • Cornu A, Besle JM, Mosoni P & Grent E (1994) Lignincarbohydrate complexes in forages: Structure and consequences in the ruminal degradation of cell-wall carbohydrates. Reprod. Nutr. Dev. 24: 385-398

    Google Scholar 

  • Czerkowski JW (1986) An Introduction to Rumen Studies. Pergamon Press, Oxford, UK, pp 9-10

    Google Scholar 

  • Deobald LA & Crawford DL (1997) Lignocellulose biodegradation. In: Hurst CJ, Knudsen GR, Stetzenbach LD & Walter MV (Eds) Manual of Environmental Microbiology (pp 730-737). ASM Press, Washington DC, USA

    Google Scholar 

  • Dizhbite T, Zakis G, Kizimia A, Lazareva E, Rossinskaya G, Jurkjane V, Telysheva G & Viesturs U (1999) Lignin-a useful bioresource for the production of sorption-active materials. Biores. Technol. 67: 221-228

    Google Scholar 

  • Egland PG, Pelletier DA, Dispensa M, Gibson J & Harwood CS (1997) A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proc. Natl. Acad. Sci. USA 94: 6484-6489

    Google Scholar 

  • Elder DJ & Kelly DJ (1994) The bacterial degradation of benzoic acid and benzenoid compounds under anaerobic conditions: Unifying trends and new perspectives. FEMS Microbiol. Rev. 13: 441-468

    Google Scholar 

  • Fan LT, Lee YH & Gharpuray MM (1982) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Adv. Biochem. Eng. 23: 157-187

    Google Scholar 

  • Fillingham IJ, Kroon PA, Willaimson G, Gilbert HJ & Hazlewood GP (1999) A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulasehemicellulase complex. Biochem. J. 343: 215-224

    Google Scholar 

  • Galletti GC, Piccaglia R & Concialini V (1990) Optimization of electrochemical detection in the high-performance liquid chromatography of lignin phenolics from lignocellulosic byproducts. J. Chromatogr. 507: 439-450

    Google Scholar 

  • Ghosh P & Gangopadyay R (2000) Photofunctionalization of cellulose and lignocellulose fibers using photoactive organic acids. Eur. Polymer J. 36: 625-634

    Google Scholar 

  • Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Bio/Technol. 3: 155-160

    Google Scholar 

  • Haigh PM (1994) A review of agronomic factors influencing grass silage effluent production in England and Wales. J. Agric. Engng. Res. 57: 73-87

    Google Scholar 

  • Hatfield RD, Ralph J & Grabber JH (1999) Cell wall structural foundations: Molecular basis for improving forage digestibilities. Crop Sci. 39: 27-37

    Google Scholar 

  • Heider J & Fuchs G (1996) Anaerobic metabolism of aromatic compounds. Eur. J. Biochem. 243: 577-596

    Google Scholar 

  • Heredia A, Jimenez A & Guillen R (1995) Composition of plant cell walls. Z. Lebensm. Unters. Forsch. 200: 24-31

    Google Scholar 

  • Hodrova B, Kopecny J & Kas J (1998) Cellulolytic enzymes of rumen anaerobic fungi Orpinomyces joyonii and Caecomyces communis. Res. Microbiol. 149: 417-427

    Google Scholar 

  • Hu WJ, Harding SA, Lung J Popko JL, Ralph J, Stokke DD, Tsai CJ & Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnol. 17: 808-812

    Google Scholar 

  • Jeffries TW (1990) Biodegradation of lignin-carbohydrate complexes. Biodegradation 1: 163-176

    Google Scholar 

  • Karunanandaa K, Fales SL, Varga GA & Royse DJ (1992) Chemical composition and biodegradability of crop residues colonized by white-rot fungi. J. Sci. Food. Agric. 60: 105-112

    Google Scholar 

  • Kaylen M, Van Dyne DL, Choi YS & Blasé M (2000) Economic feasibility of producing ethanol from lignocellulosic feedstocks. Biores. Technol. 72: 19-32

    Google Scholar 

  • Kiyohara H, Matsumoto T & Yamada H (2000) Lignin-carbohydrate complexes: Intestinal immune system modulating ingredients in kampo (Japanese herbal) medicine, juzen-taiho-to. Planta Med. 66: 20-24

    Google Scholar 

  • Kuhad RC, Singh A & Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv. Biochem. Eng. Biotechnol. 57: 45-125

    Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56: 1-24

    Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M & Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet. Biol. 27: 175-185

    Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 49: 399-426

    Google Scholar 

  • Levine JS (1996) Biomass burning and global change. Volume 1. Remote sensing and inventory development, and biomass burning in Africa. In: Levine JS (Ed) (p 35). The MIT Press, Cambridge, Massachusetts, USA

    Google Scholar 

  • Lonsane BK, Ghildyal NP, Budiatman S & Ramakrishna SV (1985) Engineering aspects of solid state fermentation. Enzyme Microb. Technol. 7: 258-265

    Google Scholar 

  • Lonsane BK, Saucedo-Castaneda G, Raimbault M, Roussos S, Viniegra-Gonzalez G, Ghildyal NP, Ramakrishna M & Krishnaiah MM (1992) Scale-up strategies for solid state fermentation systems. Process Biochem. 27: 259-273

    Google Scholar 

  • McCarthy AJ (1987) Lignocellulose-degrading actinomycetes. FEMS Microbiol. Rev. 46: 145-163

    Google Scholar 

  • McDonald P (1981) The Biochemistry of Silage. John Wiley & Sons, Chichester, UK, pp 11-12, 168-178

    Google Scholar 

  • Milstein O, Vered Y, Gressel J & Flowers HM (1981) Biodegradation of wheat straw lignocarbohydrate complexes (LCC) II. Fungal growth on aqueous hydrolysate liquors and particulate residues of wheat straw. Eur. J. Appl. Microbiol. Biotechnol. 13: 117-127

    Google Scholar 

  • Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by clostridia. Adv. Microb. Physiol. 39: 31-130

    Google Scholar 

  • Mudgett RE (1986) Solid-state fermentations. In: Demain AL & Solomon NA (Eds) Manual of Industrial Microbiology and Biotechnology (pp 66-83). American Society of Microbiology, Washington D.C., USA

    Google Scholar 

  • Mueller-Harvey I & Hartley RD (1986) Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydrate. Res. 148: 71-85

    Google Scholar 

  • Paul EA & Clark FE (1989) Soil Microbiology and Biochemistry. Academic Press, Inc. San Diego, USA

    Google Scholar 

  • Palmqvist E & Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Biores. Technol. 74: 17-24

    Google Scholar 

  • Rayner ADM & Boddy L (1988) Fungal communities in the decay of wood. Adv. Microb. Ecol. 10: 115-166

    Google Scholar 

  • Reid ID (1989) Solid-state fermentations for biological delignification. Enzyme. Microb. Technol. 11: 786-802

    Google Scholar 

  • Reid ID (1995) Biodegradation of lignin. Can. J. Bot. 73(Suppl 1): S1011-S1018

    Google Scholar 

  • Sakagami H, Satoh K, Ida Y, Koyama N, Premanathan M, Arakaki R, Nakashima H, Hatano T, Okuda T & Yoshida T (1999) Induction of apoptosis and anti-HIV activity by tannin-and lignin-related substances. Basic Life Sci. 66: 595-611

    Google Scholar 

  • Sarikaya A & Ladisch MR (1997) Mechanism and potential applications of bio-ligninolytic systems in a CELSS. Appl. Biochem. Biotechnol. 62: 131-149

    Google Scholar 

  • Scott GM, Akhtar M, Lentz MJ, Kirk TK & Swaney R (1998) New technology for papermaking: commercializing biopulping. Tappi J. 81: 220-225

    Google Scholar 

  • Sun RC, Lawther JM & Banks WB (1996) The fractional composition of polysaccharides and lignin in alkaline pre-treated and steam pressure treated wheat straw. Cellulose Chem. Technol. 30: 57-69

    Google Scholar 

  • Tomme P, Warren RA & Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37: 1-81

    Google Scholar 

  • Trigo C & Ball AS (1994) Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances? Microbiology 140: 3145-3152

    Google Scholar 

  • Tuor U, Winterhaler K & Fiechter A (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J. Biotechnol. 41: 1-17

    Google Scholar 

  • Van Veen JA, Ladd JN & Frissel MJ (1984) Modelling C & N turnover through the microbial biomass in soil. Plant Soil 76: 257-274

    Google Scholar 

  • Varga GA & Kolver ES (1997) Microbial and animal limitations to fiber digestion and utilization' J. Nutr. 127: 819S-823S

    Google Scholar 

  • Vered Y, Milstein O, Flowers HM & Gressel J (1981) Biodegradation of wheat straw lignocarbohydrate complexes (LCC). I. Dynamics of liberation of hot aqueous LCCs from wheat straw and partial characterization of the products. Eur. J. Appl. Microbiol. Biotechnol. 12: 183-188

    Google Scholar 

  • Vicuna R (2000) Ligninolysis. A very peculiar microbial process. Mol. Biotechnol. 14: 173-176

    Google Scholar 

  • Vicuna R, Gonzalez B, Seelenfreund D, Ruttimann C & Salas L (1993) Ability of natural bacterial isolates to metabolize high and low molecular weight lignin-derived molecules. J. Biotechnol. 30: 9-13

    Google Scholar 

  • Waldrop MP, Balser TC & Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol. Biochem. 32: 1837-1846

    Google Scholar 

  • Wheals AE, Basso LC, Alves DMG & Amorim HV (1999) Fuel ethanol after 25 years. TIBTECH 17: 482-487

    Google Scholar 

  • White GF, Russell NJ & Tidswell EC (1996) Bacterial scission of ether bonds. Microbiol. Rev. 60: 216-232

    Google Scholar 

  • Wignarajah K, Pisharody S & Fisher JW (2000) Can incineration technology convert CELSS wastes to resources for crop production? A working hypothesis and some preliminary findings. Adv. Space Res. 26: 327-333

    Google Scholar 

  • Wilson JR & Mertens DR (1995) Cell wall accessibility and cell structure limitations to microbial digestion of forage. Crop Sci. 35: 251-259

    Google Scholar 

  • Wolfaardt JF, Jacobs A, Rabie CJ, Smit S, Taljaardt JL & Wing-field MJ (1999) Factors affecting colonization of freshly chipped softwood by white-rot fungi. Poster presented at an International Energy Agency Bioenergy Workshop on the Bioconversion of Lignocellulose, Itala Game Reserve, South Africa, 22-26 August

  • Wubah DA, Akin DE & Borneman WS (1993) Biology, fiberdegradation, and enzymology of anaerobic zoosporic fungi. Crit. Rev. Microbiol. 19: 99-115

    Google Scholar 

  • Zadrazil F & Isikhuemhen O (1997) Solid state fermentation of lignocellulosics into animal feed with white rot fungi. In: Roussos S, Lonsane BK, Raimbault M & Viniegra-Gonzalez G (Eds) Advances in Solid State Fermentation (pp 23-38). Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.E. Cloete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malherbe, S., Cloete, T. Lignocellulose biodegradation: Fundamentals and applications. Re/Views in Environmental Science and Bio/Technology 1, 105–114 (2002). https://doi.org/10.1023/A:1020858910646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020858910646

Navigation