Skip to main content
Log in

Sol-Gel Synthesis and Phase Evolution Behavior of Sterically Stabilized Nanocrystalline Zirconia

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline as well as submicron sized, non-agglomerated, spherical ZrO2 particles have been successfully synthesized using the sol-gel technique utilizing hydroxypropyl cellulose (HPC) as a polymeric steric stabilizer. The effect of various parameters such as the ratio of molar concentration of water and alkoxide (R), the molar concentration [HPC] and the molecular weight (MWHPC) of HPC polymer as well as the calcination temperature on ZrO2 nanocrystallites size and their phase evolution behavior is systematically studied. The phase evolution behavior of nanocrystalline ZrO2 is explained and correlated with the adsorption behavior of HPC polymer on ZrO2 nanoparticles surface, which is observed to be a function of R, [HPC], MWHPC and the calcination temperature. Optimum synthesis parameters for obtaining 100% tetragonal phase in nanocrystalline ZrO2 are identified for the present sol-gel method of synthesizing nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.I. Osendi, J.S. Moya, C.J. Serna, and J. Soria, J. Am. Ceram. Soc. 68, 135 (1985).

    Google Scholar 

  2. E. Haefele, K. Kaltenmaier, and U. Schoenauer, Sensors and Actuators B: Chemical B4, 525 (1991).

    Google Scholar 

  3. M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 829, 405 (1987).

    Google Scholar 

  4. A. Knell, P. Barnickel, A. Baiker, and A. Wokaun, J. Catal. 137, 306 (1992).

    Google Scholar 

  5. R.S. Pavlik Jr., L.C. Klein, and R.A. McCauley, J. Am. Ceram. Soc. 78, 221 (1995).

    Google Scholar 

  6. H. Asaoka, Mater. Lett. 19, 213 (1994).

    Google Scholar 

  7. C.H. Chang, R. Gopalan, and Y.S. Lin, J. Membrane Sci. 91, 27 (1994).

    Google Scholar 

  8. B. Li and R.D. Gonzalez, Ind. Eng. Chem. Res. 35, 3141 (1996).

    Google Scholar 

  9. B. Fegley Jr., P. White, and H.K. Bowen, Am. Ceram. Soc. Bull. 64, 1115 (1985).

    Google Scholar 

  10. V. Nagpal, R. Davis, and J. Riffle, in Proceedings of the ACS Division of Polymeric Materials Science and Engineering (ACS, Books and Journal Division, Washington, DC, 1992), Vol. 67, p. 235.

    Google Scholar 

  11. J.H. Jean and T.A. Ring, Am. Ceram. Soc. Bull. 65, 1574 (1986).

    Google Scholar 

  12. T.E. Mates and T.A. Ring, Colloids and Surfaces 24, 299 (1987).

    Google Scholar 

  13. S. Seal, L. Bracho, S. Shukla, and J. Morgiel, J. Vac. Sci. Tech. 17, 1 (1999).

    Google Scholar 

  14. S. Shukla, S. Seal, and S. Mishra, J. Sol-Gel Sci. Tech. 23, 151 (2001).

    Google Scholar 

  15. S. Shukla and S. Seal, NanoStructured Materials 11, 1181 (1999).

    Google Scholar 

  16. E.A. Barringer and H.K. Bowen, J. Am. Ceram. Soc. 65, C-199 (1982).

    Google Scholar 

  17. J.H. Jean and T.A. Ring, Colloids and Surfaces 29, 273 (1988).

    Google Scholar 

  18. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers (Wiley & Sons, New York, 1992).

    Google Scholar 

  19. T.L. Barr and S. Seal, J. Vac. Sci. Tech. A 13, 1239 (1995).

    Google Scholar 

  20. P.M.A. Sherwood, in Auger and Photoelectron Spectroscopy, Appendix 3, edited by D. Briggs and M.P. Seah, 2nd edn. (Wiley, New York, 1996), Vol. 1, p. 555.

    Google Scholar 

  21. M.I. Osendi, J.S. Moya, C.J. Serna, and J. Soria, J. Am. Ceram. Soc. 68, 135 (1985).

    Google Scholar 

  22. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, MA, 1978), p. 102.

    Google Scholar 

  23. J.K. Bailey and M.L. Mecartney, Mat. Res. Soc. Symp. Proc. 180, 153 (1990).

    Google Scholar 

  24. J. Livage, M. Henry, J.P. Jolivet, and C. Sanchez, MRS Bulletin 15, 18 (1990).

    Google Scholar 

  25. B. Fegely Jr., E.A. Barringer, and H.K. Bowen, J. Am. Ceram. Soc. 67, C-113 (1984).

    Google Scholar 

  26. A.C. Pierre, Ceram. Bull. 70, 1281 (1991).

    Google Scholar 

  27. J. Livage, K. Doi, and C. Mazieres, J. Am. Ceram. Soc. 51, 349 (1968).

    Google Scholar 

  28. R. Cypres, R. Wollast, and J. Raucq, Ber. Deut. Keram. Ges. 40, 527 (1963).

    Google Scholar 

  29. A. Clearfield, Inorg. Chem. 3, 146 (1964).

    Google Scholar 

  30. E.D. White, Trans. Farady Soc. 61, 1991 (1965).

    Google Scholar 

  31. R.C. Garvie, J. Phys. Chem. 69, 1238 (1965).

    Google Scholar 

  32. T. Mitsuhashi, M. Ichiara, and V. Tatsuke, J. Am. Ceram. Soc. 57, 97 (1974).

    Google Scholar 

  33. R. Gomez and T. Lopez, J. Sol-Gel Sci. Technol. 11, 309 (1998).

    Google Scholar 

  34. E.C. Subba Rao, in Science and Technology of Zirconia, edited by A.H. Heuer and L.W. Hobbs (American Ceramic Society, Inc. Columbus, Ohio, 1981), Vol. 3, p. 1.

    Google Scholar 

  35. P. Li, I.W. Chen, and J.E. Penner-Hahn, J. Am. Ceram. Soc. 77, 118 (1994).

    Google Scholar 

  36. X. Lu, K. Liang, S. Gu, Y. Zheng, and H. Fang, J. Mater. Sci. 32, 6653 (1997).

    Google Scholar 

  37. R. Nitsche, M. Rodewald, G. Skandan, H. Fuess, and H. Hahn, Nanostruct. Mater. 7, 535 (1996).

    Google Scholar 

  38. R. Nitsche, M. Winterer, and H. Hahn, Nanostruct. Mater. 6, 679 (1995).

    Google Scholar 

  39. E. Tani, M. Yoshimura, and S. Somiya, J. Am. Ceram. Soc. 66, 11 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, S., Seal, S. & Vanfleet, R. Sol-Gel Synthesis and Phase Evolution Behavior of Sterically Stabilized Nanocrystalline Zirconia. Journal of Sol-Gel Science and Technology 27, 119–136 (2003). https://doi.org/10.1023/A:1023790231892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023790231892

Navigation