Skip to main content
Log in

Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

New information on N uptake and transport of inorganic and organic N in arbuscular mycorrhizal fungi is reviewed here. Hyphae of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) were shown to transport N supplied as 15N-Gly to wheat plants after a 48 h labelling period in semi-hydroponic (Perlite), non-sterile, compartmentalised pot cultures. Of the 15N supplied to hyphae in pot cultures over 48 h, 0.2 and 6% was transported to plants supplied with insufficient N or sufficient N, respectively. The increased 15N uptake at the higher N supply was related to the higher hyphal length density at the higher N supply. These findings were supported by results from in vitro and monoxenic studies. Excised hyphae from four Glomus isolates (BEG 84, 107, 108 and 110) acquired N from both inorganic (15NH4 15NO3, 15NO3 or 15NH4 +) and organic (15N-Gly and 15N-Glu, except in BEG 84 where amino acid uptake was not tested) sources in vitro during short-term experiments. Confirming these studies under sterile conditions where no bacterial mineralisation of organic N occurred, monoxenic cultures of Glomus intraradices Schenk and Smith were shown to transport N from organic sources (15N-Gly and 15N-Glu) to Ri T-DNA transformed, AM-colonised carrot roots in a long-term experiment. The higher N uptake (also from organic N) by isolates from nutrient poor sites (BEG 108 and 110) compared to that from a conventional agricultural field implied that ecotypic differences occur. Although the arbuscular mycorrhizal isolates used contributed to the acquisition of N from both inorganic and organic sources by the host plants/roots used, this was not enough to increase the N nutritional status of the mycorrhizal compared to non-mycorrhizal hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abuarghub S M and Read D J 1988 The biology of mycorrhiza in the Ericaceae. XII. Quantitative analysis of individual free amino acids in relation to time and depth in the soil profile. New Phytol. 108, 433–441.

    Article  CAS  Google Scholar 

  • Abuzinadah R A and Read D J 1989 The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula L.) infected with different mycorrhizal fungi. New Phytol. 112, 55–60.

    Article  CAS  Google Scholar 

  • Ames, R N, Reid C P P, Porter L K and Cambardella C 1983 Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol. 95, 381–396.

    Article  Google Scholar 

  • Bago B, Vierheilig H, Piché Y and Azcó n-Aguilar C 1996 Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol. 133, 273–280.

    Article  Google Scholar 

  • Bécard G and Fortin J A 1988 Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108, 211–218.

    Article  Google Scholar 

  • Bush D R 1993 Proton-coupled sugar and amino acid transporters in plants. Ann. Rev. Plant Physiol. Plant Molec. Biol. 44, 513–542.

    Article  CAS  Google Scholar 

  • Chabot S, Bécard G and Piché Y 1992 Life cycle of Glomus intraradix in root organ culture. Mycologia 84, 315–321.

    Google Scholar 

  • Chalot M, Brun A, Botton B and Söderström B 1996 Kinetics, energetics and specificity of a general amino acid transporter from the ectomycorrhizal fungus Paxillus involutus. Microbiol. 142, 1749–1756.

    Article  CAS  Google Scholar 

  • Chapin F S III, Moilanen L and Kielland K 1993 Preferential use of organic nitrogen for growth by a non-mycorrhizal artic sedge. Nature 361, 150–153.

    Article  CAS  Google Scholar 

  • Chen A, Chambers S M and Cairney J W G 1999 Utilisation of organic nitrogen and phosphorus sources by mycorrhizal endophytes of Woollsia pungens (Cav.) F. Muell. (Epacridaceae). Mycorrhiza 8, 181–187.

    Article  Google Scholar 

  • Doner L W and Bécard G 1991 Solubilization of gellan gels by chelation of cations. Biotech. Tech. 5, 25–28.

    Article  CAS  Google Scholar 

  • Doner L W and Douds D D 1995 Purification of commercial gellan to monovalent cation salts results in acute modification of solution and gel-forming properties. Carb. Res. 273, 225–233.

    Article  CAS  Google Scholar 

  • Fischer W-N, André B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K and Frommer W B 1998 Amino acid transport in plants. Trends Plant Sci. 3, 188–195.

    Article  Google Scholar 

  • Frey B and Schüepp H 1993 Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol. 124, 221–230.

    Article  Google Scholar 

  • Frommer W B, Kwart M, Hirner B, Fischer W N, Hummel S and Ninnemann O 1994 Transporters for nitrogenous compounds in plants. Plant Mol. Biol. 26, 1651–1670.

    Article  PubMed  CAS  Google Scholar 

  • George E, Häussler K, Vetterlein D, Gorgus E and Marschner H 1992 Water and nutrient translocation by hyphae of Glomus mosseae. Can. J. Bot. 70, 2130–2137.

    Google Scholar 

  • Giovannetti M and Mosse B 1980 An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500.

    Article  Google Scholar 

  • Hawkins H-J and George E 1999 Effect of nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiol. Plant. 105, 694–700.

    Article  CAS  Google Scholar 

  • Hewitt E J 1966 Sand andWater Culture Methods Used in the Study of Plant Nutrition, 2nd revised edition, Commonwealth Bureau of Horticulture and Plantation Crops, East Malling, Technical Communication No. 22, Commonwealth Agriculture Bureau, Farnham Royal, UK. pp 431–432.

    Google Scholar 

  • Huang C and Huang C P 1996 Application of Aspergillus oryzae and Rhizopus oryzae for Cu (II) removal. Wat. Res. 9, 1985–1990.

    Article  Google Scholar 

  • Jensen E S 1991 Evaluation of automated analysis of 15N and total N in plant material and soil. Plant Soil 133, 83–92.

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I and Jensen E S 1992 Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol. 122, 281–288.

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I and Jensen E S 1993 External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. III. Hyphal transport of 32P and 15N. New Phytol. 124, 61–68.

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I and Jensen E S 1994 Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160, 1–9.

    Article  CAS  Google Scholar 

  • Johansen A, Finlay R and Olsson P A 1996 Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 133, 705–712.

    Article  CAS  Google Scholar 

  • Joner E J and Johansen A 2000 Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol. Res. 104, 81–86.

    Article  CAS  Google Scholar 

  • Jones D L and Durrah P R 1993 Amino acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant Soil 163, 1–12.

    Google Scholar 

  • Kielland K 1995 Landscape patterns of free amino acids in arctic tundra soils. Biogeochemistry. 31, 85–98.

    Article  CAS  Google Scholar 

  • Koske R E and Gemma J N 1989 A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92, 486–505.

    Google Scholar 

  • Li X-L, George E and Marschner H 1991 Phosphorus depletion and pH decrease at the root- soil and hyphae- soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol. 119, 397–404

    Article  CAS  Google Scholar 

  • Lipson D A, Schadt CW, Schmidt S K and Monson R K 1999 Ectomycorrhizal transfer of amino acid-nitrogen to the alpine sedge Kobresia myosuroides. New Phytol. 142, 163–167.

    Article  CAS  Google Scholar 

  • Marschner H 1995 Mineral Nutrition of Higher Plants. Academic Press, London, UK. pp 229–312.

    Google Scholar 

  • McClure P R, Kochian L V, Spanswick R M and Shaff J E 1990 Evidence for cotransport of nitrate and protons in maize roots. II. Measurement of NO +3 and H+ fluxes with ion selective microelectrodes. Plant Physiol. 93, 290–294.

    PubMed  CAS  Google Scholar 

  • Monreal C M and McGill W B 1985 Centrifugal extraction and determination of free amino acids in soil solutions by TLC using tritiated 1-fluoro-2,4-dinitrobenzene. Soil Biol. Biochem. 17, 533–539.

    Article  CAS  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M and Högberg P 1998 Boreal forest plants take up organic nitrogen. Nature 392, 914–916.

    Article  Google Scholar 

  • Ozinga W A, Van Andel J and McDonnell-Alexander M P 1997 Nutritional soil heterogeneity and mycorrhiza as determinants of plant species diversity. Acta Bot. Neerl. 46, 237–254.

    Google Scholar 

  • Pearson J N and Jakobsen I 1993 The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol. 124, 489–494.

    Article  CAS  Google Scholar 

  • Read D J 1996 The structure and function of the ericoid mycorrhizal root. Ann. Bot. 77, 365–374.

    Article  CAS  Google Scholar 

  • Redecker D, Thierfelder H and Werner D 1995 A new cultivation system for arbuscular mycorrhizal fungi on glass beads. Angew. Bot. 69, 189–191.

    Google Scholar 

  • Roos W 1989 Kinetic properties, nutrient-dependent regulation and energy coupling of amino acid transport systems in Pennicillum cyclopium. Biochem. Biophys. Acta 978, 119–133.

    PubMed  CAS  Google Scholar 

  • Sabbah S and Tal M 1990 Development of callus and suspension cultures of potato resistant to NaCl and mannitol and their response to stress. Plant Cell, Tiss. Org. Cult 21, 119–128.

    Article  CAS  Google Scholar 

  • Schobert C and Komor E 1987 Amino acid uptake by Ricinus communis roots: Characterization and physiological significance. Plant Cell Environ. 10, 493–500.

    Article  CAS  Google Scholar 

  • Scheller E 1996 Aminosäuregehalte von Ap-und Ah-Horizonten verschiedener Böden und deren Huminsäuren-und Fulvosäuren-Fraktion. Mitt. Dt. Bodenk. Ges. 81, 201–204.

    Google Scholar 

  • Smith S E, Gianinazzi-Pearson V, Koide R and Cairney J W G 1994 Nutrient transport in mycorrhizas: structure, physiology, and consequences for efficiency of the symbiosis. Plant Soil 159, 103–113.

    Article  CAS  Google Scholar 

  • Sophianopoulou V and Diallinas G 1995 Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol. Rev. 16, 53–75.

    Article  PubMed  CAS  Google Scholar 

  • St.-Arnaud M, Hamel C, Vimard B and Caron M, Fortin J A 1996 Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Myc. Res. 100, 328–332.

    Article  Google Scholar 

  • Tobar R M, Azcó n R and Barea J M 1994a The improvement of plant N acquisition from an ammonium-treated, droughtstressed soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza 4, 105–108.

    Article  Google Scholar 

  • Tobar R M, Azcó n R and Barea J M 1994b Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol. 126, 119–122.

    Article  Google Scholar 

  • Väre H, Vestberg M and Ohtonen 1997 Shifts in mycorrhiza and microbial activity along an oroartic altitudinal gradient in northern Fennoscandia. Artic Alp. Res. 93–104.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawkins, HJ., Johansen, A. & George, E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil 226, 275–285 (2000). https://doi.org/10.1023/A:1026500810385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026500810385

Navigation