Skip to main content
Log in

Investigation into the dielectric behavior of ferroelectric superlattices formed by pulsed laser deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In an attempt to reproduce the functional properties associated with relaxor electroceramics, pulsed laser deposition has been used to fabricate thin-film capacitor structures in which the dielectric layer is composed of a superlattice of Ba0.8Sr0.2TiO3 and Ba0.2Sr0.8TiO3. The properties of the capacitors were investigated as a function of superlattice periodicity. The dielectric constant was enhanced at stacking periodicities of a few unit cells, consistent with relaxor behavior. However, enhancement of the dielectric constant was found to be associated with high dielectric loss. Analysis of the imaginary permittivity as a function of frequency shows that fine-scale superlattices conform to Maxwell–Wagner behavior. This suggests that the observed enhancement of the real part of the dielectric constant is an artefact produced by carrier migration. A comparison of this data with that already published on dielectric superlattices suggests that previous claims of an enhancement in dielectric constant may also be due to the Maxwell–Wagner effect. The onset of Maxwell–Wagner behavior was attributed to increasing density of defect zones associated with discontinuities in the superlattice structures. In an attempt to exaggerate the influence of such zones, deliberate delays between deposition of successive dielectric layers were introduced. This resulted in reproduction of several features normally associated with relaxors: enhancement of dielectric constants by over an order of magnitude; strong frequency dispersion around and below Tm; migration of Tm with frequency. However, these features were again associated with relatively high loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. CROSS, Ferroelectrics 76 (1987) 241.

    Google Scholar 

  2. D. VIEHLAND, J. Appl. Phys. 68 (1990) 2916.

    Google Scholar 

  3. G. A. SMOLENSKY, J. Phys. Soc. Jpn. 28 (1970) 26.

    Google Scholar 

  4. L. E. CROSS, Ferroelectrics 151 (1994) 305.

    Google Scholar 

  5. G. BURNS and F. H. DACOL, Solid State Commun. 48 (1983) 853.

    Google Scholar 

  6. A. K. TAGANTSEV, Phys. Rev. Lett. 72 (1994) 1100.

    Google Scholar 

  7. A. E. GLAZOUNOV and A. K. TAGANTSEV, Appl. Phys. Lett. 73 (1998) 856.

    Google Scholar 

  8. M. LEJEUNE and J. P. BOILOT, J. Phys. Colleq. 47 (1986) C1-895.

    Google Scholar 

  9. J. CHEN, A. GORTON, H. M. CHAN and M. P. HARMER, J. Am. Ceram. Soc. 69 (1986) C303.

    Google Scholar 

  10. K. PARK, L. SALAMANCARIBA, M. WUTTIG and D. VIEHLAND, J. Mater. Sci. 29 (1994) 1284.

    Google Scholar 

  11. N. DE MATHAN, J. Phys.: Condens. Matter 3 (1991) 8159.

    Google Scholar 

  12. P. BONNEAU, P. GARNIER, G. CALVARIN, E. HUSSON, J. R. GAVARRI, A. W. HEWAT and A. MORELL, J. Solid State Chem. 91 (1991) 350.

    Google Scholar 

  13. N. SETTER and L. E. CROSS, J. Appl. Phys. 51 (1980) 4356.

    Google Scholar 

  14. Y. YAN, S. J. PENNYCOOK, Z. XU and D. VIEHLAND, Appl. Phys. Lett. 72 (1998) 3145.

    Google Scholar 

  15. A. ERBIL, Y. KIM and R. A. GERHARDT, Phys. Rev. Lett. 77 (1996) 1628.

    Google Scholar 

  16. B. D. QU, M. EVSTIGNEEV, D. J. JOHNSON and R. H. PRINCE, Appl. Phys. Lett. 72 (1998) 1394.

    Google Scholar 

  17. H. TABATA, H. TANAKA, T. KAWAI and M. OKUYAMA, Jpn. J. Appl. Phys. 34 (1995) 544.

    Google Scholar 

  18. H. TABATA, H. TANAKA and T. KAWAI, Appl. Phys. Lett. 65 (1994) 1970.

    Google Scholar 

  19. SHAOPING LI, J. A. EASTMAN, J. M. VETRONE, R. E. NEWNHAM and L. E. CROSS, Phil. Mag. B, 76 (1997) 47.

    Google Scholar 

  20. I. KANNO, S. HAYASHI, R. TAKAYAMA and T. HIRAO, Appl. Phys. Lett. 68 (1996) 328.

    Google Scholar 

  21. Y. OHYA, T. ITO and Y. TAKAHASHI, Jpn. J. Appl. Phys. 33 (1994) 5272.

    Google Scholar 

  22. S. Y. HOU, J. KWO, R. K. WATTS, J. Y. CHENG and D. K. FORK, Appl. Phys. Lett. 67 (1995) 1387.

    Google Scholar 

  23. M. E. LINES and A. M. GLASS, "Principles and Applications of Ferroelectrics and Related Materials" (Clarendon Press, Oxford, 1997).

    Google Scholar 

  24. Y. FUKUDA, K. NUMATA, K. AOKI and A. NISHIMURA, Jpn. J. Appl. Phys. Part 1 35 (1996) 5178.

    Google Scholar 

  25. A. R. VON HIPPEL, "Dielectrics and Waves" (Wiley, New York, 1954).

    Google Scholar 

  26. J. VOLGER, Prog. Semicond. 4 (1960) 207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Neill, D., Bowman, R.M. & Gregg, J.M. Investigation into the dielectric behavior of ferroelectric superlattices formed by pulsed laser deposition. Journal of Materials Science: Materials in Electronics 11, 537–541 (2000). https://doi.org/10.1023/A:1026539700710

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026539700710

Keywords

Navigation