Skip to main content
Log in

From snapshot information to long-term population dynamics of Acacias by a simulation model

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The African Acacia species A. raddiana is believed to be endangered in the Negev desert of Israel. The ecology of this species is not well understood. The main idea of our study is to learn more about the long-term population dynamics of these trees using snapshot information in the form of size frequency distributions. These distributions are highly condensed indices of population dynamics acting over many years. In this paper, we analyse field data on recruitment, growth, and mortality and use an existing simulation model of the population dynamics of A. raddiana (SAM) to produce contrasting scenarios of these live history processes that are based on the analysed field evidence. The main properties of simulated as well as observed tree size frequency distributions are characterised with Simpson's index of dominance and a new permutation index. Finally, by running the SAM model under the different scenarios, we study the effect of these different processes on simulated size frequency distributions (pattern) and we compare them to size distributions observed in the field, in order to identify the processes acting in the field. Our study confirms rare recruitment events as a major factor shaping tree size frequency distributions and shows that the paucity of recruitment has been a normal feature of A. raddiana in the Negev over many years. Irregular growth, e.g., due to episodic rainfall, showed a moderate influence on size distributions. Finally, the size frequency distributions observed in the Negev reveal the information that, in this harsh environment, mortality of adult A. raddiana is independent of tree size (age).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashkenazi, S. (1995) Acacia trees in the Negev and the Arava, Israel: A review following reported large-scale mortality. Hakeren Hakayemet LeIsrael, Jerusalem (in Hebrew, with English summary).

    Google Scholar 

  • Belsky, A. J., Amundson, R. G., Duxbury, J. M., Riha, S. J., Ali, A. R. & Mwonga, S. M. 1989. The effects of trees on their physical, chemical, and biological environment in a semi-arid savanna in Kenya. J. Appl. Ecol. 26: 1005–1024.

    Google Scholar 

  • Belsky, A. J., Mwonga, S. M., Amundson, R. G., Duxbury, J. M. & Ali, A. R. 1993. Comparative effects of isolated trees on their undercanopy environments in high-and low-rainfall savannas. J. Appl. Ecol. 30: 143–155.

    Google Scholar 

  • Bendel, R. B., Higgins, S. S. & Teberg, J. E. 1989. Comparison of skewness coefficient, coefficient of variation, and Gini coefficient as inequality measures within populations. Oecologia 78: 394–400.

    Google Scholar 

  • Boulos, L. 1983. Medicinal plants of North Africa. Medicinal plants of the world. Reference Publications Inc., Algonac, Michigan, USA.

    Google Scholar 

  • Coe, M. & Coe, C. 1987. Large herbivores, Acacia trees and bruchid beetles. S. Afr. J. Sci. 83: 624–635.

    Google Scholar 

  • Coughenour, M. B., Ellis, J. E. & Popp, R. G. 1990. Morphometric relationships and developmental patterns of Acacia tortilis and Acacia reficiens in Southern Turkana, Kenya. Bull. Torrey Bot. Club 117: 8–17.

    Google Scholar 

  • DeAngelis, D. L. & Huston, M. A. 1987. Effects of growth rate in models of size distribution formation in plants and animals. Ecol. Modell. 36: 119–137.

    Google Scholar 

  • Dixon, P. M., Weiner, J., Mitchell-Olds, T. & Woodley, R. 1987. Bootstrapping the Gini coefficient of inequality. Ecology 68: 1548–1551.

    Google Scholar 

  • Dublin, H. T. 1995 Vegetation dynamics in the Serengeti-Mara ecosystem: the role of elephants, fire, and other factors. Pp. 71–90. In: Sinclair, A. R. & Arcese, P. (eds), Serengeti II: Dynamics, management, and conservation of an ecosystem. Chicago University Press, Chicago.

    Google Scholar 

  • Ehleringer, J. R., Cook, C. S. & Tieszen, L. L. 1985. Comparative water use and nitrogen relationships in a mistletoe and its host. Oecologia 68: 279–284.

    Google Scholar 

  • Glasser, G. J. 1962. Variance formulas for the mean difference and coefficient of concentration. Journal of the American Statistical Association 57: 648–654.

    Google Scholar 

  • Gourlay, I. D. 1995a. Growth ring characteristics of some African Acacia species. J. Trop. Ecol. 11: 121–140.

    Google Scholar 

  • Gourlay, I. D. 1995b. The definition of seasonal growth zones in some African Acacia species-a review. IAWA J. 16: 353–359.

    Google Scholar 

  • Grice, A. C. 1984. The demography of the leguminous shrubs Acacia victoriae, Cassia nemophila and C. phyllodinea in semiarid south-eastern Australia. PhD Thesis. Macquarie University, North Ryde, Australia.

    Google Scholar 

  • Grice, A. C., Westoby, M. & Torpy, C. 1994. Dynamics and population structure of Acacia victoria Benth. Aust. J. Ecol. 19: 10–16.

    Google Scholar 

  • Grimm, V. 1994. Mathematical models and understanding in ecology. Ecol. Modell. 75/76: 641–651.

    Google Scholar 

  • Gwynne, M. D. 1969. The nutritive value of Acacia pods in relation to Acacia seed distribution by ungulates. E. Afr.Wildl. J. 7: 176–178.

    Google Scholar 

  • Halevy, G. 1974. Effects of gazelles and seed beetles (Bruchidae) on germination and establishment of Acacia species. Isr. J. Bot. 23: 120–126.

    Google Scholar 

  • Hara, T. 1984. A stochastic model and the moment dynamics of the growth and size distribution in plant populations. J. Theor. Biol. 109: 173–190.

    Google Scholar 

  • Harper, J. L. 1977. Population biology of plants. Academic Press, New York.

    Google Scholar 

  • Hauser, T. P. 1994. Germination, predation and dispersal of Acacia albida seeds. Oikos 71: 421–426.

    Google Scholar 

  • Härdle, W. 1991. Smoothing techniques: With implementation in S. Springer-Verlag, New York.

    Google Scholar 

  • Huston, M. 1986. Size bimodality in plant populations: an alternative hypothesis. Ecology 67: 265–269.

    Google Scholar 

  • Huston, M. A. & DeAngelis, D. L. 1987 Size bimodality in monospecific populations: A critical review of potential mechanisms. Am. Nat. 129: 678–707.

    Google Scholar 

  • Jeltsch F., Milton S. J., Dean W. R. J. & Van Rooyen N. 1997. Simulated pattern formation around artificial waterholes in the semiarid Kalahari. J. Veg. Sci. 8: 177–188.

    Google Scholar 

  • Jeltsch F., Moloney K. A. & Milton S. J. 1999. Detecting process from snap-shot pattern-lessons from tree spacing in the southern Kalahari. Oikos 85: 451–466.

    Google Scholar 

  • Judson, O. P. 1994. The rise of individual-based models in ecology. Trends Ecol. Evol. 9: 9–14.

    Google Scholar 

  • Kirkpatrick, M. 1984. Demographic models based on size, not age, for organisms with indeterminate growth. Ecology 65: 1874–1884.

    Google Scholar 

  • Kiyiapi, J. L. 1994. Structure and characteristics of Acacia tortilis woodland on the Njemps Flats. Adv. Geoecol. 27: 47–69.

    Google Scholar 

  • Leistner, O. A. 1967. The plant ecology of the southern Kalahari. Memoirs of the Bot. Soc. S. Afr. 38: 11–73.

    Google Scholar 

  • Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Google Scholar 

  • Martin, D. M. & Moss, J. M. 1997. Age determination of Acacia tortilis (Forsk.) Hayne from northern Kenya. Afr. J. Ecol. 35: 266–277.

    Google Scholar 

  • Miller, M. F. 1996. Acacia seed predation by bruchids in an African savanna ecosystem. J. Appl. Ecol. 33: 1137–1144.

    Google Scholar 

  • Milton, S. J. 1988. The effects of pruning on shoot production and basal increment of Acacia tortilis. S. Afr. J. Bot. 54: 109–117.

    Google Scholar 

  • Milton, S. J. 1995. How useful is the keystone concept and can it be applied to Acacia erioloba in the Kalahari desert?. Z. Ökologie Naturschutz 4: 147–156.

    Google Scholar 

  • Moloney, K. A., Levin, S. A., Chiariello, N. R. & Buttel, L. 1992. Pattern and scale in a serpentine grassland. Theor. Popul. Biol. 41: 257–276.

    Google Scholar 

  • Mwalyosi, R. B. 1990. The dynamic ecology of Acacia tortilis woodland in LakeManyara National Park, Tanzania. Afr. J. Ecol. 28: 189–199.

    Google Scholar 

  • Norton, D. A. & Carpenter, M. A. 1998. Mistletoes as parasites: host specificity and speciation. Trends. Ecol. Evol. 13: 101–105.

    Google Scholar 

  • Obeid, M. & Seif, E. D. 1970. Ecological studies of the vegetation of the Sudan. I. Acacia Senegal (L) Willd. and its natural regeneration. J. Appl. Ecol. 7: 507–518.

    Google Scholar 

  • Peled, Y. 1988. Mortality of Acacia trees in the southern Arava. MSc Thesis, Hebrew University, Jerusalem (in Hebrew, with English summary).

    Google Scholar 

  • Peled, Y. 1995. Death of the Acacias. Eretz, Geogr. Mag. Israel 9: 63–65.

    Google Scholar 

  • Pellew, R.A. 1983. The impacts of elephant, giraffe and fire upon Acacia tortilis woodlands of the Serengeti. Afr. J. Ecol. 21: 41–74.

    Google Scholar 

  • Pielou, E. C. 1977. Mathematical Ecology. JohnWiley & Sons, New York.

    Google Scholar 

  • Prins, H. H. & Van der Jeugd, H. P. 1993. Herbivore population crashes and woodland structure in East Africa. J. Ecol. 81: 305–314.

    Google Scholar 

  • Ratz, A. 1996. A generic forest fire model: spatial patterns in forest fire ecosystems. PhD thesis, Philipps-Universität Marburg, Germany.

    Google Scholar 

  • Rhoades, C. 1995. Seasonal pattern of nitrogen mineralisation and soil moisture beneath Faidherbia albida (syn Acacia albida) in central Malawi. Agroforestry Syst. 29: 133–145.

    Google Scholar 

  • Rohner, C. & Ward D. 1999. Large mammalian herbivores and the conservation of arid Acacia stands in the Middle East. Cons. Biol., 13: 1162–1171.

    Google Scholar 

  • Ross, J. H. 1979. A conspectus of African Acacia species. Mem. Bot. Soc. S. Afr. 44: 1–155.

    Google Scholar 

  • Ross, J. H. 1981. An analysis of the African Acacia species: their distribution, possible origins and relationships. Bothalia 13: 389–413.

    Google Scholar 

  • Ruess, R. W. & Halter, F. L. 1990. The impact of large herbivores on the Seronera woodlands, Serengeti National Park, Tanzania. Afr. J. Ecol. 28: 259–275.

    Google Scholar 

  • Shackleton, C. M. 1993. Fuelwood harvesting and sustainable utilisation in a communal grazing land and protected area of the eastern Transvaal Lowveld. Biol. Cons. 63: 247–254.

    Google Scholar 

  • Silverman, B. W. 1986. Density estimation for statistics and data analysis. Monographs on statistics and applied probability. Chapman and Hall, London, New York.

    Google Scholar 

  • Sinclair, A. R. 1995. Equilibria in plant-herbivore interactions. Pp. 91–113 In: Sinclair, A. R. & Arcese, P. (eds), Serengeti II: Dynamics, management, and conservation of an ecosystem University of Chicago Press, Chicago, London.

    Google Scholar 

  • Turner, M. D. & Rabinowitz, D. 1983. Factors affecting frequency distributions of plant mass: the absence of dominance and suppression in competing monocultures of Festuca paradoxa. Ecology 64: 469–475.

    Google Scholar 

  • Van Sickle, J. 1977. Mortality rates and size distributions. Oecologia 27: 311–318.

    Google Scholar 

  • Walker, B. H., Stone, L., Henderson, L. & Vernede, M. 1986. Size structure analysis of the dominant trees in a South African savanna. S. Afr. J. Bot. 52: 397–402.

    Google Scholar 

  • Ward, D. & Rohner, C. 1997. Anthropogenic causes of high mortality and low recruitment in three Acacia tree species in the Negev desert, Israel. Biodivers. Cons. 6: 877–893.

    Google Scholar 

  • Weiner, J. & Solbrig, O. T. 1984. The meaning and measurement of size hierarchies in plant populations. Oecologia (Berlin) 61: 334–336.

    Google Scholar 

  • Weltzin, J. F. & Coughenour, M. B. 1990. Savanna tree influence on understorey vegetation and soil nutrients in northwestern Kenya. J.Veg. Sci. 1: 325–334.

    Google Scholar 

  • Wiegand, K. 1999. A model of the spatio-temporal population dynamics of Acacia raddiana. UFZ-Bericht 15/1999, UFZ Centre for Environmental Research Leipzig-Halle GmbH, Germany.

  • Wiegand K., Jeltsch F. & Ward D. 1999. Analysis of the population dynamics of Acacia trees in the Negev desert, Israel with a spatially-explicit computer simulation model. Ecol. Modell. 117: 203–224.

    Google Scholar 

  • Wiegand, K., Jeltsch, F., Ward, D. & Rohner, C. 1998. Decline of the Negev's Acacias -a spatially explicit simulation model as an aid for sustainable management. Pp. 63–72. In: J. L. Usó , J. L., Brebbia, C. A. & Power, H. (eds), Ecosystems and sustainable development, Computational Mechanics Publications, Southhampton.

  • Wiegand T., Milton S. J. & Wissel, C. 1995. A simulation model for a shrub ecosystem in the semiarid Karoo, South Africa. Ecology 76: 2205–2221.

    Google Scholar 

  • Wiegand, T., Milton, S. J., Esler, K. J. & Midgley, G. 2000. Fast growth and early death: estimating size-age relations and mortality pattern of shrub species in the semiarid Karoo, South Africa. Plant Ecology, 150(1-2) in this issue.

  • Young, T. P. & Lindsay, W. K. 1988. Role of even-age population structure in the disappearance of Acacia xanthophloea woodlands. Afr. J. Ecol. 26: 69–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiegand, K., Ward, D., Thulke, HH. et al. From snapshot information to long-term population dynamics of Acacias by a simulation model. Plant Ecology 150, 97–114 (2000). https://doi.org/10.1023/A:1026574303048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026574303048

Navigation