Skip to main content
Log in

Submicrometer-Scale Patterning of Ceramic Thin Films

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The patterning of ceramic thin films is of great interest for use in MEMS and other applications. However, the complex chemistries of certain materials make the use of traditional photolithography techniques prohibitive. In this paper, a number of low-cost, high throughput techniques for the patterning of ceramic thin films derived from chemical solution precursors, such as sol-gels and ceramic slurries, are presented. A particular emphasis is placed on methods that are derived from soft lithographic methods using elastomer molds. Two categories of techniques are discussed: first, the focus is on methods that rely on the principles of confinement within the physical features of the mold to define the pattern on the substrate surface. Then, subtractive patterning techniques that rely on transferring a pattern to a spin-cast, large-area continuous thin film are described. While most techniques have been demonstrated with fidelities on the order of 100 nm, their inability to precisely register and align the patterns as part of a hierarchical fabrication scheme have thus far hindered their commercial implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication(Oxford University Press, New York, 1996).

    Google Scholar 

  2. T. Ito and S. Okazaki, Nature, 406, 1027 (2000).

    PubMed  Google Scholar 

  3. C. Hageleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, and H. Baltes, Nature, 414, 293 (2001).

    PubMed  Google Scholar 

  4. D.L. Polla and L.F. Francis, Annu. Rev. Mater. Sci., 28, 563 (1998).

    Google Scholar 

  5. S. Ono and S. Hirano, J. Am. Ceram. Soc., 80, 2533 (1997).

    Google Scholar 

  6. N. Ozawa and T. Yao, Solid State Ionics, 151, 79 (2002).

    Google Scholar 

  7. K. Nashimoto, K. Haga, M. Watanabe, S. Nakamura, and E. Osakabe, Appl. Phys. Lett., 75, 1054 (1999).

    Google Scholar 

  8. J.F. Scott and C.A. Paz de Araujo, Science, 246, 1400 (1989).

    Google Scholar 

  9. D.A. Payne and P.G. Clem, J. Electroceram., 3, 163 (1999).

    Google Scholar 

  10. Y. Xia and G.M. Whitesides, Annu. Rev. Mater. Sci., 28, 153 (1998).

    Google Scholar 

  11. A. Roelofs, T. Schneller, K. Szot, and R. Waser, Appl. Phys. Lett., 81, 5231 (2002).

    Google Scholar 

  12. F.F. Lange, Science, 273, 903 (1996).

    PubMed  Google Scholar 

  13. R.W. Schwartz, Chem. Mater., 9, 2325 (1997).

    Google Scholar 

  14. P.F. Blazdell, J.R.G. Evans, M.J. Edirisinghe, P. Shaw, and M.J. Binstead, J. Mater. Sci. Lett., 14, 1562 (1995).

    Google Scholar 

  15. M. Mott, J.-H. Song, and J.R.G. Evans, J. Am. Ceram. Soc., 82, 1653 (1999).

    Google Scholar 

  16. P. Calvert, Chem. Mater., 13, 3299 (2001).

    Google Scholar 

  17. X.-M. Zhao, Y. Xia, and G.M. Whitesides, J. Mater. Chem., 7, 1069 (1997).

    Google Scholar 

  18. T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul, and G.M. Whitesides, Langmuir, 18, 5314 (2002).

    Google Scholar 

  19. A. Folch and M.A. Schmidt, J. Microelectromech. S., 8, 85 (1999).

    Google Scholar 

  20. C.R. Martin and I.A. Aksay, submitted.

  21. X.M. Zhao, Y.N. Xia, and G.M. Whitesides, Adv. Mater., 8, 837 (1996).

    Google Scholar 

  22. E. Kim, Y. Xia, and G.M. Whitesides, Nature, 376, 581 (1995).

    Google Scholar 

  23. Y. Xia, E. Kim, and G.M. Whitesides, Chem. Mater., 8, 1558 (1996).

    Google Scholar 

  24. E. Kim, Y. Xia, and G.M. Whitesides, J. Am. Chem. Soc., 118, 5722 (1996).

    Google Scholar 

  25. J.H. Kim, F.F. Lange, and C.-I. Choen, J. Mater. Res., 14, 1194 (1999).

    Google Scholar 

  26. P.M. Moran and F.F. Lange, Appl. Phys. Lett., 74, 1332 (1999).

    Google Scholar 

  27. U.P. Schönholzer, N. Stutzmann, T.A. Tervoort, P. Smith, and L.J. Gauckler, J. Am. Ceram. Soc., 85, 1885 (2002).

    Google Scholar 

  28. U.P. Schönholzer and L.J. Gauckler, Adv. Mater., 11, 630 (1999).

    Google Scholar 

  29. B. Su, D. Zhang, and T.W. Button, J. Mater. Sci., 37, 3123 (2002).

    Google Scholar 

  30. E. Kim and G.M. Whitesides, J. Phys. Chem. B, 101, 855 (1997).

    Google Scholar 

  31. N.L. Jeon, I.S. Choi, B. Xu, and G.M. Whitesides, Adv. Mater., 11, 946 (1999).

    Google Scholar 

  32. G. Yi, Z. Wu, and M. Sayer, J. Appl. Phys., 64, 2717 (1988).

    Google Scholar 

  33. J.S. Vartuli, M. Özenba, C.-M. Chun, M. Trau, and I.A. Aksay, J. Mater. Res., 18, 1259 (2003).

    Google Scholar 

  34. C.R. Martin and I.A. Aksay, J. Phys. Chem. B., 107, 4261 (2003).

    Google Scholar 

  35. W.S. Beh, Y. Xia, and D. Qin, J. Mater. Res., 14, 3995 (1999).

    Google Scholar 

  36. S. Seraji, Y. Wu, N.E. Jewell-Larson, M.J. Forbess, S.J. Limmer, T.P. Chou, and G. Cao, Adv. Mater., 12, 1421 (2000).

    Google Scholar 

  37. M. Trau, N. Yao, E. Kim, Y. Xia, G.M. Whitesides, and I.A. Aksay, Nature, 390, 674 (1997).

    Google Scholar 

  38. A.Y. Ku, doctoral dissertation, Princeton University, 2003.

  39. P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, and G.D. Stucky, Science, 282, 2244 (1998).

    PubMed  Google Scholar 

  40. M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, and Y.C. Han, Chem. Mater., 14, 2224 (2002).

    Google Scholar 

  41. X.M. Han, J. Lin, R.B. Xing, J. Fu, and S.B. Wang, Mater. Lett., 57, 1355 (2003).

    Google Scholar 

  42. M. Heule and L.J. Gauckler, Adv. Mater., 13, 1790 (2001).

    Google Scholar 

  43. C.A. Bulthaup, E.J. Wilhelm, B.N. Hubert, B.A. Ridley, and J.M. Jacobson, Appl. Phys. Lett., 79, 1525 (2001).

    Google Scholar 

  44. S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Science, 272, 85 (1996).

    Google Scholar 

  45. S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, and L. Zhuang, J. Vac. Sci. Technol. B, 15, 2897 (1997).

    Google Scholar 

  46. C. Marzolin, S.P. Smith, M. Prentiss, and G.M. Whitesides, Adv. Mater., 10, 571 (1998).

    Google Scholar 

  47. E. Delamarche, H. Schmid, H.A. Biebuyck, and B. Michel, Adv. Mater., 9, 741 (1997).

    Google Scholar 

  48. O.J.A. Schueller, G.M. Whitesides, J.A. Rogers, M. Meier, and A. Dodabalapur, Appl. Optics, 38, 5799 (1999).

    Google Scholar 

  49. A. Matsuda, Y. Matsuno, M. Tatsumisago, and T. Minami, J. Am. Ceram. Soc., 81, 2849 (1998).

    Google Scholar 

  50. S. Petronis, K.-L. Eckert, J. Gold, and E.Wintermantel, J. Mater. Sci.-Mater. Med., 12, 523 (2001).

    PubMed  Google Scholar 

  51. B. Su, T.W. Button, A. Schneider, L. Singleton, and P. Prewett, Microsyst. Technol., 8, 359 (2002).

    Google Scholar 

  52. A. Schneider, B. Su, T.W. Button, L. Singleton, O. Wilhelmi, S.E. Huq, P.D. Prewett, and R.A. Lawes, Microsyst. Technol., 8, 88 (2002).

    Google Scholar 

  53. U.P. Schönholzer, R. Hummel, and L.J. Gauckler, Adv. Mater., 12, 1261 (2000).

    Google Scholar 

  54. T. Ohishi, S. Maekawa, and A. Katoh, J. Non-Cryst. Solids, 147/148, 493 (1992).

    Google Scholar 

  55. K. Shinmou, N. Tohge, and T. Minami, Jpn. J. Appl. Phys., 33, L1181 (1994).

    Google Scholar 

  56. T. Yogo, Y. Takeichi, K. Kikuta, and S.-I. Hirano, J. Am. Ceram. Soc., 78, 1649 (1995).

    Google Scholar 

  57. K. Kikuta, K. Takagi, and S. Hirano, J. Am. Ceram. Soc., 82, 1569 (1999).

    Google Scholar 

  58. K. Kikuta, K. Suzumori, K. Takagi, and S. Hirano, J. Am. Ceram. Soc., 82, 2263 (1999).

    Google Scholar 

  59. C. Marzolin, A. Terfort, J. Tien, and G.M. Whitesides, Thin Solid Films, 315, 9 (1998).

    Google Scholar 

  60. Y. Nakao, T. Nakamura, K. Hoshiba, K. Sameshima, A. Kamisawa, K. Abe, N. Soyama, and K. Ogi, Jpn. J. Appl. Phys., 32, 4141 (1993).

    Google Scholar 

  61. J.V. Mantese, A.B. Catalan, A.M. Mance, A.H. Hamdi, A.L. Micheli, J.A. Sell, and M.S. Meyer, Appl. Phys. Lett., 53, 1335 (1988).

    Google Scholar 

  62. T. Toshiyuki, N. Ichinose, S. Kawanishi, M. Nishii, T. Sasuga, I. Hashida, and K. Mizuno, Chem. Mater., 9, 2674 (1997).

    Google Scholar 

  63. L.S. Hung and L.R. Zheng, Appl. Phys. Lett., 60, 2210 (1992).

    Google Scholar 

  64. S. Okamura, Y. Yagi, S. Ando, T. Tsukamoto, and K. Mori, Jpn. J. Appl. Phys., 33, 6579 (1996).

    Google Scholar 

  65. A. Kakimi, S. Okamura, Y. Yagi, K. Mori, and T. Tsukamoto, Jpn. J. Appl. Phys., 33, 5301 (1994).

    Google Scholar 

  66. K. Mori and S. Okamura, Jpn. J. Appl. Phys., 31, L1143 (1992).

    Google Scholar 

  67. A. Kumar and G.M. Whitesides, Appl. Phys. Lett., 63, 2002 (1993).

    Google Scholar 

  68. A. Kumar, H.A. Biebuyck, and G.M. Whitesides, Langmuir, 10, 1498 (1994).

    Google Scholar 

  69. N.L. Jeon, P.G. Clem, R.G. Nuzzo, and D.A. Payne, J. Mater. Res., 10, 2996 (1995).

    Google Scholar 

  70. P.G. Clem, N.-L. Jeon, R.G. Nuzzo, and D.A. Payne, J. Am. Ceram. Soc., 80, 2821 (1997).

    Google Scholar 

  71. A.A. Darhuber, S.M. Troian, J.M. Davis, S.M. Miller, and S. Wagner, J. Appl. Phys., 88, 5119 (2000).

    Google Scholar 

  72. N.L. Jeon, P. Clem, D.Y. Jung, W. Lin, G.S. Girolami, D.A. Payne, and R.G. Nuzzo, Adv. Mater., 9, 891 (1997).

    Google Scholar 

  73. Y.K. Hwang, S.Y. Woo, J.H. Lee, D.-Y. Jung, and Y.-U. Kwon, Chem. Mater., 12, 2059 (2000).

    Google Scholar 

  74. H. Shin, J.U. Jeon, Y.E. Pak, H. Im, and E.S. Kim, J. Mater. Res., 16, 564 (2001).

    Google Scholar 

  75. M. Bartz, A. Terfort, W. Knoll, and W. Tremel, Chem. Eur. J., 6, 4149 (2000).

    Google Scholar 

  76. M.Yan, Y. Koide, J.R. Babcock, P.R. Markworth, J.A. Belot, T.J. Marks, and R.P.H. Chang, Appl. Phys. Lett., 79, 1709 (2001).

    Google Scholar 

  77. C. Bechinger, H. Muffler, C. Schäfle, O. Sundberg, and P. Leiderer, Thin Solid Films, 366, 135 (2000).

    Google Scholar 

  78. R.J. Collins, H. Shin, M.R. DeGuire, A.H. Heuer, and C.N. Sukenik, Appl. Phys. Lett., 69, 860 (1996).

    Google Scholar 

  79. K. Koumoto, S. Seo, T. Sugiyama, W.S. Seo, and W.J. Dressick, Chem. Mater., 11, 2305 (1999).

    Google Scholar 

  80. N. Saito, H. Haneda, W.-S. Seo, and K. Koumoto, Langmuir, 17, 1461 (2001).

    Google Scholar 

  81. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, Adv. Mater., 14, 418 (2002).

    Google Scholar 

  82. N. Shirahata, Y. Masuda, T. Yonezawa, and K. Koumoto, Langmuir, 18, 10379 (2002).

    Google Scholar 

  83. Y. Masuda, W.S. Seo, and K. Koumoto, Jpn. J. Appl. Phys., 39, 4596 (2000).

    Google Scholar 

  84. H. Shin, Y. Wang, U. Sampathkumaran, M.R. DeGuire, A.H. Heuer, and C.N. Sukenik, J. Mater. Res., 14, 2116 (1999).

    Google Scholar 

  85. P.C. Hidber, W. Helbig, E. Kim, and G.M. Whitesides, Langmuir, 12, 1375 (1996).

    Google Scholar 

  86. M. Wang, H.-G. Braun, T. Kratzmüller, and E. Meyer, Adv. Mater., 13, 1312 (2001).

    Google Scholar 

  87. S.M. Miller, S.M. Troian, and S. Wagner, J. Vac. Sci. Technol. B, 20, 2320 (2002).

    Google Scholar 

  88. M. Wang, H.-G. Braun, and E. Meyer, Chem. Mater., 14, 4812 (2002).

    Google Scholar 

  89. J.W. Hutchinson and Z. Suo, Adv. Appl. Mech., 29, 63 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, C., Aksay, I. Submicrometer-Scale Patterning of Ceramic Thin Films. Journal of Electroceramics 12, 53–68 (2004). https://doi.org/10.1023/B:JECR.0000034001.15359.98

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JECR.0000034001.15359.98

Navigation