Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dislocations at atomic scale

Abstract

HIGH resolution electron microscopy has developed to such an extent that atomic scale details can now be observed: local information about atomic positions is therefore directly available1,2. In contrast, diffraction experiments (X rays, neutrons, electrons) would give statistical data averaged over the whole sample, in addition to the difficulty of phase determination in complicated structures. The electron microscope is therefore a powerful and unique tool with which to study defects in the periodic structure of a crystal. We have applied this technique to dislocations and grain boundaries in germanium, and have determined their structure on a scale of 3–4 Å.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Iijima, S. & Allpress, J. G. Acta Crystallogr. A30, 22–29 (1974).

    Article  Google Scholar 

  2. Skarnulis, A. J., Iijima, S. & Cowley, J. M. Acta Crystallogr. A32, 799–805 (1976).

    Article  Google Scholar 

  3. Bourret, A., Desseaux, J. & Renault, A. Acta Crystallogr. A31, 746–752 (1975).

    Article  Google Scholar 

  4. Cockayne, D. J. H., Parsons, J. R. & Hoelke, C. W. Phil. Mag. 24, 139–153 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Ray, I. L. F. & Cockayne, D. J. H. Phil. Mag. 22, 853–856 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Phillips, V. A. & Wagner, R. J. appl. Phys. 44, 4252–4254 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Hornstra, J. J. Phys. Chem. Solid 5, 129–141 (1958).

    Article  ADS  CAS  Google Scholar 

  8. Gomez, A., Cockayne, D. J. H., Hirsch, P. B. & Vitek, V. Phil. Mag. 31, 105–113 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Desseaux, J., Renault, A. & Bourret, A. Phil. Mag. 35, 357–372 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Bourret, A. & Desseaux, J. J. Microsc. Spectros. Electron. 2, 13–18 (1977).

    CAS  Google Scholar 

  11. Frank, F. C. Rep. Symp. Plastic deformation of Crystalline Solids 150 (Carnegie Institute of Technology, Pittsburgh, 1950).

    Google Scholar 

  12. Nabarro, F. R. N. Proc. Phys. Soc. Lond. 59, 256 (1947).

    Article  ADS  CAS  Google Scholar 

  13. Bollmann, W. Crystal defects and crystalline interfaces (Springer, Berlin, 1970).

    Book  Google Scholar 

  14. Bourret, A., Desseaux, J. & Renault, A. J. Microsc. Spectros. Electron. 2, 467–474 (1977).

    CAS  Google Scholar 

  15. Cowley, J. M. Diffraction physics (Elsevier, North Holland, 1975).

    Google Scholar 

  16. Krivanek, O. L., Isoda, S. & Kobayashi, K. Phil. Mag. 36, 931–940 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BOURRET, A., DESSEAUX, J. Dislocations at atomic scale. Nature 272, 151–152 (1978). https://doi.org/10.1038/272151a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272151a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing