Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-organized growth of nanostructure arrays on strain-relief patterns

Abstract

The physical and chemical properties of low-dimensional structures depend on their size and shape, and can be very different from those of bulk matter. If such structures have at least one dimension small enough that quantum-mechanical effects prevail, their behaviour can be particularly interesting. In this way, for example, magnetic nanostructures can be made from materials that are non-magnetic in bulk1, catalytic activity can emerge from traditionally inert elements such as gold2, and electronic behaviour useful for device technology can be developed3,4. The controlled fabrication of ordered metal and semiconductor nanostructures at surfaces remains, however, a difficult challenge. Here we describe the fabrication of highly ordered, two-dimensional nanostructure arrays through nucleation of deposited metal atoms on substrates with periodic patterns defined by dislocations that form to relieve strain. The strain-relief patterns are created spontaneously when a monolayer or two of one material is deposited on a substrate with a different lattice constant. Dislocations often repel adsorbed atoms diffusing over the surface, and so they can serve as templates for the confined nucleation of nanostructures from adatoms. We use this technique to prepare ordered arrays of silver and iron nanostructures on metal substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: STM image of periodically ordered versus randomly nucleated islands on a heterogeneous substrate.
Figure 3: STM images showing the confined nucleation of adatom islands on a dislocation network.
Figure 4: Arrhenius plot of measured (dots) and simulated (curve) island densities, n x, for nucleation of 0.1 ML Ag on the dislocation network of Fig. 3a.

Similar content being viewed by others

References

  1. Wildberger, K., Stepanyuk, V. S., Lang, P., Zeller, R. & Dederichs, P. H. Magnetic nanostructures: 4d clusters on Ag(001). Phys. Rev. Lett. 75, 509–512 (1995).

    Article  CAS  ADS  Google Scholar 

  2. Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997).

    Article  CAS  Google Scholar 

  3. Orlov, A. O., Amlani, I., Bernstein, G. H., Lent, C. S. & Snider, G. L. Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997).

    Article  CAS  Google Scholar 

  4. Eberl, K. Quantum-dot lasers. Phys. World 10(9), 45–50 (1997).

    Google Scholar 

  5. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  ADS  Google Scholar 

  6. Kent, A. D., Molnar, S. v., Gider, S. & Awschalom, D. D. Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays. J. Appl. Phys. 76, 6656–6660 (1994).

    Article  CAS  ADS  Google Scholar 

  7. Röder, H., Hahn, E., Brune, H., Bucher, J. P. & Kern, K. Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces. Nature 366, 141–143 (1993).

    Article  ADS  Google Scholar 

  8. Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P. & Petroff, P. M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs-surfaces. Appl. Phys. Lett. 63, 3203–3205 (1993).

    Article  CAS  ADS  Google Scholar 

  9. Nötzel, R., Tommyo, J. & Tamamura, T. Self-organized growth of strained InGaAs quantum disks. Nature 369, 131–133 (1994).

    Article  ADS  Google Scholar 

  10. Moison, J. M. et al. Self-organized growth of regular nanometer-scale InAs dots on GaAs. Appl. Phys. Lett. 64, 196–198 (1994).

    Article  CAS  ADS  Google Scholar 

  11. Bromann, K. et al. Controlled deposition of size-selected Ag nanoclusters. Science 274, 956–958 (1996).

    Article  CAS  ADS  Google Scholar 

  12. Tersoff, J., Teichert, C. & Lagally, M. G. Self-organization in growth of quantum dot superlattices. Phys. Rev. Lett. 76, 1675–1678 (1996).

    Article  CAS  ADS  Google Scholar 

  13. Chambliss, D. D., Wilson, R. J. & Chiang, S. Nucleation of ordered Ni island arrays on Au(111) by surface-lattice dislocations. Phys. Rev. Lett. 66, 1721–1724 (1991).

    Article  CAS  ADS  Google Scholar 

  14. Meyer, J. A., Baikie, J. D., Kopatzki, E. & Behm, R. J. Preferential island nucleation at the elbows of the Au(111) herringbone reconstruction through place exchange. Surf. Sci. 365, L647–L651 (1996).

    Article  CAS  ADS  Google Scholar 

  15. Shiryaev, S. Y., Jensen, F., Hansen, J. L., Petersen, J. W. & Larsen, A. N. Nanoscale structuring by misfit dislocations in Si1−xGex/Si epitaxial systems. Phys. Rev. Lett. 78, 503–506 (1997).

    Article  CAS  ADS  Google Scholar 

  16. Brune, H. et al. The effect of strain on surface diffusion and nucleation. Phys. Rev. B 52, R14380–R14383 (1995).

    Article  CAS  ADS  Google Scholar 

  17. Brune, H., Röder, H., Boragno, C. & Kern, K. Strain relief at hexagonal close packed interfaces. Phys. Rev. B 49, 2997–3000 (1994).

    Article  CAS  ADS  Google Scholar 

  18. Ratsch, C., Seitsonen, A. P. & Scheffler, M. Strain-dependence of surface diffusion: Ag on Ag(111) and Pt(111). Phys. Rev. B 55, 6750–6753 (1997).

    Article  CAS  ADS  Google Scholar 

  19. Fafard, S., Leon, R., Leonard, D., Marz, J. L. & Petroff, P. M. Phonons and radiative recombination in self-assembled quantum dots. Phys. Rev. B 52, 5752–5755 (1995).

    Article  ADS  Google Scholar 

  20. Brune, H. Kinetics of nucleation and aggregation in metal epitaxy. Surf. Sci. Rep. 31, 121–126 (1998).

    Article  CAS  ADS  Google Scholar 

  21. Horn-von-Hoegen, M., Falou, A. A., Pietsch, H., Müller, B. H. & Henzler, M. Formation of the interfacial dislocation network in surfactant-mediated growth of Ge on Si(111) by SPALEED Part I. Surf. Sci. 298, 29–42 (1993).

    Article  CAS  ADS  Google Scholar 

  22. Wiederholt, T., Brune, H., Wintterlin, J., Behm, R. J. & Ertl, G. Formation of two-dimensional sulfide phases on Al(111): an STM study. Surf. Sci. 324, 91–105 (1994).

    Article  ADS  Google Scholar 

  23. Besenbacher, F., Nielsen, L. P. & Sprunger, P. T. in Growth and Properties of Ultrathin Epitaxial Layers (eds King, D. A.& Woodruff, D. P.) 207–257 (Elsevier, Amsterdam, (1997)).

    Book  Google Scholar 

  24. Böhringer, M., Jiang, Q., Berndt, R., Schneider, W. D. & Zegenhagen, J. Discommensurations, epitaxial growth and island formation in Cu/Ge(111). Surf. Sci. 367, 245–260 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Jacobsen, K. Jacobsen and J. Nørskov for providing us with the kinetic Monte Carlo computer code that we adopted for nucleation on a superlattice.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, H., Giovannini, M., Bromann, K. et al. Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394, 451–453 (1998). https://doi.org/10.1038/28804

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28804

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing