Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements

Abstract

Research based on 15N stable isotope variations in natural compounds is expanding in scientific fields such as biogeochemistry (isotope fractionation effects measurements1–7), metabolic studies8,9, hydrology (research of NO3 pollution origin in aquifers10–14), agronomy (estimate of N2 symbiotic fixation by legumes15–17) and oceanography (determination of the source of sedimentary nitrogen18–21). However, intercomparison of results obtained in different laboratories is a problem due to the lack of intercalibrated standards. Atmospheric nitrogen has been chosen by many investigators as a standard20,22,23 and I present here a simple method for the preparation of atmospheric N2 as a standard for δ15N expression with excellent reproducibility. The results indicate a wide homogeneity in isotopic composition of atmospheric nitrogen which appears to be a reliable standard for 15N natural abundance measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cline, J. D. & Kaplan, I. R. Mar. Chem. 3, 271–299 (1975).

    Article  CAS  Google Scholar 

  2. Delwiche, C. C. & Steyn, P. L. Envir. Sci. Technol. 4, 925–935 (1970).

    Article  ADS  Google Scholar 

  3. Hoering, T. & Ford, H. T. J. Am. chem. Soc. 82, 376–378 (1960).

    Article  CAS  Google Scholar 

  4. Mariotti, A. et al. Physiol. Vég. 18, 163–181 (1980).

    CAS  Google Scholar 

  5. Mariotti, A., Germon, J. C. & Leclerc, A. Can. J. Soil Sci. 62, 227–241 (1982).

    Article  CAS  Google Scholar 

  6. Wada, E. & Hattori, A. Geomicrobiol. J. 1, 85–101 (1978).

    Article  CAS  Google Scholar 

  7. Wellman, R. P., Cook, E. P. & Krouse, H. R. Science 161, 269–270 (1968).

    Article  ADS  CAS  Google Scholar 

  8. Kohl, D. H. & Shearer, G. in Recent Developments in Mass Spectrometry in Biochemistry and Medicine Vol. 1 (ed. Frigerio, A.) 605–622 (Plenum, New York, 1978).

    Google Scholar 

  9. Shearer, G. et al. Pl. Physiol. 70, 465–468 (1982).

    Article  CAS  Google Scholar 

  10. Freyer, H. D. & Aly, A. I. M. in Isotope Ratio as Pollutant Source and Behaviour Indicators 21–33 (IAEA/FAO Symp. SM 191/9, Vienna, 1975).

    Google Scholar 

  11. Karamanos, R. E. & Rennie, D. A. Can. J. Soil. Sci. 61, 553–559 (1981).

    Article  CAS  Google Scholar 

  12. Kohl, D. H., Shearer, G. & Commoner, B. Science 174, 1331–1334 (1971).

    Article  ADS  CAS  Google Scholar 

  13. Kreitler, C. W. J. Hydrol. 42, 147–170 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Mariotti, A. & Letolle, R. J. Hydrol. 33, 157–172 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Kohl, D. H., Shearer, G. & Harper, J. E. Pl. Physiol. 66, 61–65 (1980).

    Article  CAS  Google Scholar 

  16. Amarger, N. et al. Pl. Soil 52, 269–280 (1979).

    Article  CAS  Google Scholar 

  17. Rennie, D. A., Paul, E. A. & Johns, L. E. Can. J. Soil. Sci. 56, 43–50 (1976).

    Article  CAS  Google Scholar 

  18. Mariotti, A. thesis (Mém. Sci. Terre. Univ. Curie, Paris, No. 82–13, 1982).

  19. Miyake, Y. & Wada, E. Rec. Ocean. Works in Jap. 11, 1–6 (1971).

    CAS  Google Scholar 

  20. Sweeney, R. E., Liu, K. K. & Kaplan, I. R. Mar. Chem. 9, 81–94 (1980).

    Article  CAS  Google Scholar 

  21. Wada, E. & Hattori, A. Geochim. cosmochim. Acta, 40, 249–251 (1975).

    Article  ADS  Google Scholar 

  22. Hoering, T. Science 122, 1233–1234 (1955).

    Article  ADS  CAS  Google Scholar 

  23. Junk, G. & Svec, H. J. Geochim. cosmochim. Acta 14, 234–243 (1958).

    Article  ADS  CAS  Google Scholar 

  24. Nier, A. O. Rev. scient. Instrum. 18, 398–411 (1947).

    Article  ADS  CAS  Google Scholar 

  25. McKinney, C. R., McCrea, J. M., Epstein, S., Allen, H. A. & Urey, H. C. Rev. scient. Instrum. 21, 724–730 (1950).

    Article  ADS  CAS  Google Scholar 

  26. Bridger, N. I., Craig, R. D. & Sercombe, J. S. F. 6th int. Mass Spectrometer Conf., Edinburgh (1973).

  27. Gonfiantini, R. Nature 271, 534–536 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Mariotti, A. & Letolle, R. Analusis 6, 421–425 (1978).

    CAS  Google Scholar 

  29. Mariotti, A. et al. Pl. Soil 62, 413–430 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariotti, A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303, 685–687 (1983). https://doi.org/10.1038/303685a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303685a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing