Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sharpness of upper-mantle discontinuities determined from high-frequency reflections

Abstract

AN understanding of the nature of seismic discontinuities in the Earth's upper mantle is important for understanding mantle processes: in particular, the amplitude and sharpness of these discontinuities are critical for assessing models of upper-mantle phase changes and chemical layering. So far, seismic studies aimed at determining the thickness and lateral variability of upper-mantle discontinuities have yielded equivocal results, particularly for the discontinuity at 410km depth1,2. Here we present short-period (0.8–2.0 s) recordings of upper-mantle precursors to the seismic phase P′P′ (PKPPKP) from two South American earthquakes recorded by the 700-station short-period array in California. Our results show that the 410- and 660-km discontinuities beneath the Indian Ocean are locally simple and sharp, corresponding to transi-tion zones of 4 km or less. These observations pose problems for mineral physics models3–5, which predict a transitional thickness greater than 6 km for the peridotite to β-spinel phase transition. In contrast to the results of long-period studies6,7, we observe no short-period arrivals from near 520 km depth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nakanishi, I. Geophys. J. 93, 335–346 (1988).

    Article  ADS  Google Scholar 

  2. Davis, J. P. Geophys. J. Int. 99, 595–604 (1989).

    Article  ADS  Google Scholar 

  3. Katsura, T. & Ito, E. J. geophys. Res. 94, 15663–15670 (1989).

    Article  ADS  Google Scholar 

  4. Akaogi, M., Ito, E. & Navrotsky, A. J. geophys. Res. 94, 15671–15685 (1989).

    Article  ADS  Google Scholar 

  5. Bina, C. R. & Wood, B. J. J. geophys. Res. 92, 4853–4866 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Shearer, P. M. Nature 344, 121–126 (1990).

    Article  ADS  Google Scholar 

  7. Revenaugh, J. & Jordan, T. H. J. geophys. Res. 96, 19763–19780 (1991).

    Article  ADS  Google Scholar 

  8. Ito, E. & Takahashi, E. J. geophys. Res. 94, 10637–10646 (1989).

    Article  ADS  Google Scholar 

  9. Anderson, D. L. & Bass, J. D. Nature 320, 321–328 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Solomatov, V. S. & Stevenson, D. J. Nature (submitted).

  11. Shearer, P. M. & Masters, T. G. Nature 335, 791–796 (1992).

    Article  ADS  Google Scholar 

  12. Petersen, N. et al. Geophys. Res. Lett. 20, 859–862 (1993).

    Article  ADS  Google Scholar 

  13. Engdahl, E. R. & Flinn, E. A. Science 163, 177–179 (1969).

    Article  ADS  CAS  Google Scholar 

  14. Adams, R. D. Bull. seism. Soc. Am. 61, 1441–1451 (1971).

    Google Scholar 

  15. Lees, A. C., Bukowinski, M. S. T. & Jeanloz, R. J. geophys. Res. 88, 8145–8159 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Helmberger, D. V. & Wiggins, R. A. J. geophys. Res. 76, 3229–3245 (1971).

    Article  ADS  Google Scholar 

  17. Hales, A. L., Muirhead, K. J. & Rynn, J. M. W. Tectonophysics 63, 309–348 (1980).

    Article  ADS  Google Scholar 

  18. Grand, S. P. & Helmberger, D. V. Geophys. J. R. Astr. Soc. 76, 399–438 (1984).

    Article  ADS  Google Scholar 

  19. Richards, M. A. & Wicks, C. W. Geophys. J. Int. 101, 1–35 (1990).

    Article  ADS  Google Scholar 

  20. Vidale, J. E. & Benz, H. M. Nature 356, 678–683 (1992).

    Article  ADS  Google Scholar 

  21. Paulssen, H. J. geophys. Res. 93, 10489–10500 (1988).

    Article  ADS  Google Scholar 

  22. Bock, G. & Kind, R. Geophys. J. Int. 107, 117–129 (1991).

    Article  ADS  Google Scholar 

  23. Whitcomb, J. H. & Anderson, D. L. J. geophys. Res. 75, 5713–5728 (1970).

    Article  ADS  Google Scholar 

  24. Whitcomb, J. H. Bull. seism. Soc. Am. 63, 133–143 (1973).

    Google Scholar 

  25. Husebye, E. S., Haddon, R. A. W. & King, D. W. J. Geophys. 43, 535–543 (1977).

    Google Scholar 

  26. Richards, P. G. Z. geophys. 38, 517–527 (1972).

    Google Scholar 

  27. Kennett, B. L. N. IASPEI 1991 Seismological Tables (Austr. Natn. Univ., Canberra, 1991).

    Book  Google Scholar 

  28. Shearer, P. M. Geophys. J. Int. (in the press).

  29. Cummins, P. R., Kennett, B. L. N., Bowman, J. R. & Bostock, M. G. Bull. seism. Soc. Am. 82, 323–336 (1992).

    Google Scholar 

  30. Jones, L. E., Mori, J. & Helmberger, D. V. J. geophys. Res. 97, 8765–8774 (1992).

    Article  ADS  Google Scholar 

  31. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benz, H., Vidale, J. Sharpness of upper-mantle discontinuities determined from high-frequency reflections. Nature 365, 147–150 (1993). https://doi.org/10.1038/365147a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365147a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing