Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A numerical method for solving partial differential equations on highly irregular evolving grids

Abstract

An efficient numerical method is described for solving partial differential equations in problems where traditional eulerian and lagrangian techniques fail. The approach makes use of the geometrical concept of 'natural neighbours', the properties of which make it suitable for solving problems involving large deformation and solid–fluid interactions on a deforming mesh, without the need for regridding. The approach can also be applied to high-order partial differential equations (such as the Navier-Stokes equation), even in cases where the evolving mesh is highly irregular.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roache, P. J. Computational Fluid Dynamics (Hermosa, Albuquerque, NM, 1982).

    MATH  Google Scholar 

  2. Zienkiewicz, O. C. The Finite Element Method 3rd edn (McGraw-Hill, Maidenhead, 1977).

    MATH  Google Scholar 

  3. Zienkiewicz, O. C. & Phillips, D. V. Int. J. num. Meth. Engng 8, 519–528 (1971).

    Article  Google Scholar 

  4. Bathe, K.-J., Ramm, E. & Wilson, E. L. Int. J. num. Meth. Engng 9, 353–386 (1975).

    Article  Google Scholar 

  5. Sibson, R. Math. Proc. Camb. phil. Soc. 87, 151–155 (1980).

    Article  MathSciNet  Google Scholar 

  6. Voronoi, M. G. J. reine angew. Math. 134, 198–287 (1908).

    MathSciNet  Google Scholar 

  7. Delaunay, B. N. Bull. Acad. Sci. USSR: Class. Sci. Math. 7, 793–800 (1934).

    Google Scholar 

  8. Fortune, S. in Computing in Euclidean Geometry (eds Du, D. Z. & Hwang, F.) (World Scientific, Singapore, 1992).

    Google Scholar 

  9. Barber, B., Dobkin, D. P. & Huhdanpaa, H. Technical Rep. GCG53 (The Geometry Centre, Univ. Minesota, Minneapolis, 1993).

    Google Scholar 

  10. Fortune, S. Algorithmica 2, 153–174 (1987).

    Article  MathSciNet  Google Scholar 

  11. Braun, J. & Sambridge, M. Earth planet Sci. Lett. 124, 211–220 (1994).

    Article  ADS  Google Scholar 

  12. Sibson, R. in Interpreting Multivariate Data (ed. Barnet, V.) 21–36 (Wiley, Chichester, 1981).

    Google Scholar 

  13. Watson, D. F. Contouring: a Guide to the Analysis and Display of Spatial Data (Pergamon, Oxford, 1992).

    Google Scholar 

  14. Finlayson, B. A. The Method of Weighted Residuals and Variational Principles (Academic, New York, 1972).

    MATH  Google Scholar 

  15. Sambridge, M., Braun, J. & McQueen, H. Geophys. J. int. (In the press).

  16. Lasserre, J. B. J. Opt. Theory Applic. 39, 363–377 (1983).

    Article  Google Scholar 

  17. Bathe, K.-J. Finite Element Procedures in Engineering Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1982).

    Google Scholar 

  18. Van Norton, R. in Mathematical Methods for Digital Computers Vol. 1 (eds Ralston, A. &Wilf, H. S.) (Wiley, New York, 1960).

    Google Scholar 

  19. Hughes, T. J. R., Winget, J., Levit, T. & Tedzuyar, T. E. in Computer Methods for Non-linear Solids and Structure (eds Atluri, S. N. & Perrone, N.) 75–109 (Am. Soc. Mech. Eng., New York, 1983).

    Google Scholar 

  20. Batchetor, G. K. An Introduction to Fluid Dynamics (Cambridge Univ. Press, 1967).

    Google Scholar 

  21. Fung, Y. C. Foundations of Solid Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, J., Sambridge, M. A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376, 655–660 (1995). https://doi.org/10.1038/376655a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376655a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing