Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stacking fault energies and slip in nanocrystalline metals

Abstract

The search for deformation mechanisms in nanocrystalline metals has profited from the use of molecular dynamics calculations. These simulations have revealed two possible mechanisms; grain boundary accommodation, and intragranular slip involving dislocation emission and absorption at grain boundaries. But the precise nature of the slip mechanism is the subject of considerable debate, and the limitations of the simulation technique need to be taken into consideration. Here we show, using molecular dynamics simulations, that the nature of slip in nanocrystalline metals cannot be described in terms of the absolute value of the stacking fault energy—a correct interpretation requires the generalized stacking fault energy curve, involving both stable and unstable stacking fault energies. The molecular dynamics technique does not at present allow for the determination of rate-limiting processes, so the use of our calculations in the interpretation of experiments has to be undertaken with care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical deformation mechanisms observed in simulations of fully 3D samples using three model potentials.
Figure 2: Diagram of generalized planar fault energy curves for the stacking and twin fault planar defects.
Figure 3: GPF energy curves for six empirical potentials.

Similar content being viewed by others

References

  1. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. & Gleiter, H. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nature Mater. 3, 43–47 (2004).

    Article  CAS  Google Scholar 

  2. Schiøtz, J., Di Tolla, F.D. & Jacobsen, K.W. Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561–563 (1998).

    Article  Google Scholar 

  3. Schiøtz, J., Vegge, T.F., Di Tolla, D. & Jacobsen K.W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60, 11971–11983 (1999).

    Article  Google Scholar 

  4. Schiøtz, J. & Jacobsen, K.W. A maximum in the strength of nanocrystalline copper. Science 301, 1357–1359 (2003).

    Article  Google Scholar 

  5. Van Swygenhoven, H. & Derlet, P.M. Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).

    Article  Google Scholar 

  6. Van Swygenhoven, H., Derlet, P.M. & Hasnaoui, A. Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66, 024101 (2002).

    Article  Google Scholar 

  7. Derlet, P.M., Van Swygenhoven, H. & Hasnaoui, A. Atomistic simulation of dislocation emission in nanosized grain boundaries. Phil. Mag. 83, 3569–3575 (2003).

    Article  CAS  Google Scholar 

  8. Derlet, P.M., Hasnaoui, A. & Van Swygenhoven, H. Atomistic simulations as guidance to experiments. Scripta Mater. 49, 629–635 (2003).

    Article  CAS  Google Scholar 

  9. Van Swygenhoven, H., Derlet, P.M., Budrovic, Z. & Hasnaoui, A. Unconventional deformation mechanism in nanocrystalline metals? Z. Metallk. 94, 1106–1110 (2003).

    Article  CAS  Google Scholar 

  10. Van Swygenhoven, H. Grain boundaries and dislocations. Science 296, 66–67 (2002).

    Article  CAS  Google Scholar 

  11. Hasnaoui, A., Van Swygenhoven, H. & Derlet, P.M. On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation. Acta. Mater. 50, 3927–3939 (2002).

    Article  CAS  Google Scholar 

  12. Hasnaoui, A., Van Swygenhoven, H. & Derlet, P.M. Dimples on fracture surfaces as evidence for shear plane formation in nanocrystalline metals. Science 300, 1550–1552 (2003).

    Article  CAS  Google Scholar 

  13. Van Swygenhoven, H. et al. Atomistic studies of plasticity in nanophase metals. Mater. Res. Soc. Symp. Proc. 634, B5.5.1–B5.5.12 (2001).

    Google Scholar 

  14. Derlet, P.M. & Van Swygenhoven, H. Atomic positional disorder in fcc metal nanocrystalline grain boundaries. Phys. Rev. B 67, 014202 (2003).

    Article  Google Scholar 

  15. Cleri, F. & Rosato, V. Tight binding potentials for transition metal alloys. Phys. Rev. B 48, 22–33 (1993).

    Article  CAS  Google Scholar 

  16. Mishin, Y., Farkas, D., Mehl, M.J. & Papaconstantopoulos, D.A. Interatomic potentials for Al and Ni from experimental data and ab initio calculations. Mater. Res. Soc. Symp. Proc. 538, 535–540 (1999).

    Article  CAS  Google Scholar 

  17. Frøseth, A.G., Van Swygenhoven, H. & Derlet, P.M. The influence of twins on the mechanical properties of nc-Al. Acta Mater. 52, 2259–2268 (2004).

    Article  Google Scholar 

  18. de Koning, M., Cai, W. & Bulatov, V.V. Anomalous dislocation multiplication in fcc metals. Phys. Rev. Lett. 91, 025503 (2003).

    Article  Google Scholar 

  19. Zimmerman, J.A., Gao, H. & Abraham, F.F. Generalized stacking fault energies for embedded atom FCC metals. Model. Simul. Mater. Sci. Eng. 8, 103–115 (2000).

    Article  CAS  Google Scholar 

  20. Rice, J.R. Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239–271 (1992).

    Article  CAS  Google Scholar 

  21. Tadmor, E.B. & Hai, S. A Peierls criterion for the onset of deformation twinning at a crack tip. J. Mech. Phys. Solids 51, 765–793 (2003).

    Article  CAS  Google Scholar 

  22. Hai, S. & Tadmor, H.B. Deformation twinning at aluminium crack tips. Acta Mater. 51, 117–131 (2003).

    Article  CAS  Google Scholar 

  23. Farkas, D., Van Swygenhoven, H. & Derlet, P.M. Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66, 60101(R) (2002).

  24. Ercolessi, F. & Adams, J.B. Interatomic potentials from first-principles calculations: The force-matching method. Europhys. Lett. 26, 583–588 (1994).

    Article  CAS  Google Scholar 

  25. Yamakov, V., Wolf, D., Phillpot, S.R. & Gleiter H. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 50, 5005–5020 (2002).

    Article  CAS  Google Scholar 

  26. Jacobsen, K.W., Stoltze, P. & Nørskov, J.K. A semi-empirical effective medium theory for metals and alloys. Surf. Sci. 366, 394–402 (1996).

    Article  CAS  Google Scholar 

  27. Derlet, P.M. & Van Swygenhoven, H. On length scale effects in molecular dynamics simulations of the deformation properties of nano-crystalline metals. Scripta Mater. 47, 719–724 (2002).

    Article  CAS  Google Scholar 

  28. Liao, X.C. et al. Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl. Phys. Lett. 84, 592–594 (2004).

    Article  CAS  Google Scholar 

  29. Liao, X.C., Zhou, F., Lavernia, E.J., He, D.W. & Zhu, Y.T. Deformation twins in nanocrystalline Al. Appl. Phys. Lett. 83, 5062–5064 (2003).

    Article  CAS  Google Scholar 

  30. Ogata, S., Li, J. & Yip, S. Ideal pure shear strength of aluminum and copper. Science 298, 807–811 (2002).

    Article  CAS  Google Scholar 

  31. Budrovic, Z., Van Swygenhoven, H., Derlet, P.M., Van Petegem, S. & Schmitt, B. Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science 304, 273–276 (2004).

    Article  CAS  Google Scholar 

  32. Liao, X.C. et al. Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett. 83, 632–634 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss FN (grant no. 200021-100055/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Van Swygenhoven.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Swygenhoven, H., Derlet, P. & Frøseth, A. Stacking fault energies and slip in nanocrystalline metals. Nature Mater 3, 399–403 (2004). https://doi.org/10.1038/nmat1136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing