Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two- versus three-dimensional quantum confinement in indium phosphide wires and dots

Abstract

The size dependence of the bandgap is the most identifiable aspect of quantum confinement in semiconductors; the bandgap increases as the nanostructure size decreases1,2,3. The bandgaps in one-dimensional (1D)-confined wells, 2D-confined wires, and 3D-confined dots should evolve differently with size as a result of the differing dimensionality of confinement1. However, no systematic experimental comparisons of analogous 1D, 2D or 3D confinement systems have been made. Here we report growth of indium phosphide (InP) quantum wires having diameters in the strong-confinement regime, and a comparison of their bandgaps with those previously reported for InP quantum dots4,5,6,7. We provide theoretical evidence to establish that the quantum confinement observed in the InP wires is weakened to the expected extent, relative to that in InP dots, by the loss of one confinement dimension. Quantum wires sometimes behave as strings of quantum dots8, and we propose an analysis to generally distinguish quantum-wire from quantum-dot behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Predictions of simple particle-in-a-box models for the size dependences of the kinetic confinement energies of electrons and holes in corresponding quantum wells, wires and dots.
Figure 2: Transmission electron microscope images of InP quantum wires.
Figure 3: Spectral data.
Figure 4: Experimental InP quantum-dot (red squares)4,5,6 and quantum-wire (blue squares) data plotted as ΔEg versus 1/d2.
Figure 5: Theoretical and experimental InP quantum-dot and quantum-wire data plotted as ΔEg versus 1/dn, for n = 1.35 (dot) and 1.45 (wire).

Similar content being viewed by others

References

  1. Yoffe, A.D. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173–266 (1993).

    Article  CAS  Google Scholar 

  2. Efros, A.L. & Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 30, 475–521 (2000).

    Article  CAS  Google Scholar 

  3. Yoffe, A.D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1–208 (2001).

    Article  CAS  Google Scholar 

  4. Mícíc, O.I., Sprague, J., Lu, Z. & Nozik, A.J. Highly efficient band-edge emission from InP quantum dots. Appl. Phys. Lett. 68, 3150–3152 (1996).

    Article  Google Scholar 

  5. Mícíc, O.I., Jones, K.M., Cahill, A. & Nozik, A.J. Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots. J. Phys. Chem. B 102, 9791–9796 (1998).

    Article  Google Scholar 

  6. Mícíc, O.I., Ahrenkiel, S.P. & Nozik, A.J. Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films. Appl. Phys. Lett. 78, 4022–4024 (2001).

    Article  Google Scholar 

  7. Guzelian, A.A. et al. Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 100, 7212–7219 (1996).

    Article  CAS  Google Scholar 

  8. Hasen, J. et al. Metamorphosis of a quantum wire into quantum dots. Nature 390, 54–57 (1997).

    Article  CAS  Google Scholar 

  9. Dingle, R. Confined carrier quantum states in ultrathin semiconductor heterostructures. Festkörperprobleme XV, 21–48 (1975).

    Article  Google Scholar 

  10. Harper, P.G. & Hilder, J.A. Exciton spectra in thin crystals. Phys. Status Solidi 26, 69–76 (1968).

    Article  CAS  Google Scholar 

  11. Gudiksen, M.S., Wang, J. & Lieber, C.M. Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B 106, 4036–4039 (2002).

    Article  CAS  Google Scholar 

  12. Nanda, K.K., Kruis, F.E. & Fissan, H. Energy levels in embedded semiconductor nanoparticles and nanowires. Nano Lett. 1, 605–611 (2001).

    Article  CAS  Google Scholar 

  13. Brus, L.E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    Article  CAS  Google Scholar 

  14. D'Andrea, A. & Del Sole, R. Excitons in semiconductor confined systems. Solid State Commun. 74, 1121–1124 (1990).

    Article  CAS  Google Scholar 

  15. Lefebvre, P., Christol, P. & Mathieu, H. Unified formulation of excitonic absorption spectra of semiconductor quantum wells, superlattices, and quantum wires. Phys. Rev. B 48, 17308–17315 (1993).

    Article  CAS  Google Scholar 

  16. Lefebvre, P., Christol, P., Mathieu, H. & Glutsch, S. Confined excitons in semiconductors: Correlation between binding energy and spectral absorption shape. Phys. Rev. B 52, 5756–5759 (1995).

    Article  CAS  Google Scholar 

  17. Li, L.-s., Hu, J., Yang, W. & Alivisatos, A.P. Band gap variation of size- and shape-controlled colloidal CdSe and quantum rods. Nano Lett. 1, 349–351 (2001).

    Article  CAS  Google Scholar 

  18. Kan, S., Mokari, T., Rothenberg, E. & Banin, U. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nature Mater. 2, 155–158 (2003).

    Article  CAS  Google Scholar 

  19. Tang, Z., Kotov, N.A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    Article  CAS  Google Scholar 

  20. Holmes, J.D., Johnston, K.P., Doty, R.C. & Korgel, B.A. Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471–1473 (2000).

    Article  CAS  Google Scholar 

  21. Trentler, T.J. et al. Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors; elucidation of molecular and nonmolecular components of the pathway. J. Am. Chem. Soc. 119, 2172–2181 (1997).

    Article  CAS  Google Scholar 

  22. Trentler, T.J. et al. Solution-liquid-solid growth of crystalline III-V semiconductors; an analogy to vapor-liquid-solid growth. Science 270, 1791–1794 (1995).

    Article  CAS  Google Scholar 

  23. Markowitz, P.D., Zach, M.P., Gibbons, P.C., Penner, R.M. & Buhro, W.E. Phase separation in AlxGa1-xAs nanowhiskers grown by the solution-liquid-solid mechanism. J. Am. Chem. Soc. 123, 4502–4511 (2001).

    Article  CAS  Google Scholar 

  24. Gudiksen, M.S., Wang, J. & Lieber, C.M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105, 4062–4064 (2001).

    Article  CAS  Google Scholar 

  25. Wu, Y. & Yang, P. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165–3166 (2001).

    Article  CAS  Google Scholar 

  26. Yu, H., Gibbons, P.C., Kelton, K.F. & Buhro, W.E. Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles. J. Am. Chem. Soc. 123, 9198–9199 (2001).

    Article  CAS  Google Scholar 

  27. Yu, H. & Buhro, W.E. Solution-liquid-solid growth of soluble GaAs nanowires. Adv. Mater. 2003, 416–419 (2003).

    Article  Google Scholar 

  28. Stuczynksi, S.M., Opila, R.L., Marsh, P., Brennan, J.G. & Steigerwald, M.L. Formation of indium phosphide from trimethylindium (In(CH3)3) and tris(trimethylsilyl)phosphine (P(Si(CH3)3)3). Chem. Mater. 3, 379–381 (1991).

    Article  Google Scholar 

  29. Wang, L.-W. & Zunger, A. Solving Schrödinger's equation around a desired energy: Application to silicon quantum dots. J. Chem. Phys. 100, 2394–2397 (1994).

    Article  CAS  Google Scholar 

  30. Fu, H. & Zunger, A. InP quantum dots: Electronic structure, surface effects, and the redshifted emission. Phys. Rev. B 56, 1496–1508 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental work was funded by the USA National Science Foundation (CHE-0092735). The semiempirical pseudopotential calculations were supported by the USA Department of Energy (Contract No. DE-AC03-76SF00098), using the resources of the National Energy Research Scientific Computing Center. We thank P. C. Gibbons for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Wang Wang or William E. Buhro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Li, J., Loomis, R. et al. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nature Mater 2, 517–520 (2003). https://doi.org/10.1038/nmat942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing