Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent quantum control of two-photon transitions by a femtosecond laser pulse

Abstract

Coherent quantum control1,2,3 has attracted interest as a means to influence the outcome of a quantum-mechanical interaction. In principle, the quantum system can be steered towards a desired state by its interaction with light. For example, in photoinduced transitions between atomic energy levels, quantum interference effects can lead to enhancement or cancellation of the total transition probability. The interference depends on the spectral phase distribution of the incident beam; as this phase distribution can be tuned, the outcome of the interaction can in principle be controlled. Here we demonstrate that a femtosecond laser pulse can be tailored, using ultrashort pulse-shaping4,5,6,7 techniques, to control two-photon transitions in caesium. By varying the spectral phases of the pulse components, we observe the predicted cancellation of the transitions due to destructive quantum interference; the power spectrum and energy of these ‘dark pulses’ are unchanged. We also show that the pulse shape can be modified extensively without affecting the two-photon transition probability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the energy levels of the 6S1/2 − 8S1/2 two-photon transitions in Cs.
Figure 2: Experimental system for coherent quantum control of two-photon transitions.
Figure 3: Experimental and calculated results for coherent quantum control oftwo-photon transitions in Cs gas by a periodic phase distribution Θ(Ω) = α cos (βΩ + ϕ).

Similar content being viewed by others

References

  1. Rice, S. A. New ideas for guiding the evolution of a quantum system. Science 258, 412–413 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Brumer, P. & Shapiro, M. Laser control of chemical reactions. Sci. Am. 272(3), 34–39 (1995).

    Google Scholar 

  3. Warren, W. S., Rabitz, H. & Dahleh, M. Coherent control of quantum dynamics: the dream is alive. Science 259, 1581–1589 (1993).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Weiner, A. M. & Heritage, J. P. Picosecond and femtosecond Fourier pulse shape synthesis. Rev. Phys. Appl. 22, 1619–1628 (1987).

    Article  Google Scholar 

  5. Weiner, A. M., Leaird, D. E., Patel, J. & Wullert, J. R. Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. Opt. Lett. 15, 326–328 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Hillegas, C. W., Tull, J. X., Goswami, D., Strickland, D. & Warren, W. S. Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses. Opt. Lett. 19, 737–739 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Wefers, M. M. & Nelson, K. A. Generation of high-fidelity programmable ultrafast optical waveforms. Opt. Lett. 20, 1047–1049 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Tannor, D. J. in Molecules in Laser Fields (ed. Bandrauk, A.) 403–446 (Dekker, New York, 1994).

    Google Scholar 

  9. Tannor, D. J. & Rice, S. A. Control of selectivity of chemical reaction via control of wave packet evolution. J. Chem. Phys. 83, 5013–5018 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Tannor, D. J., Kosloff, R. & Rice, S. A. Coherent pulse sequence induced control of selectivity of reactions: exact quantum mechanical calculations. J. Chem. Phys. 85, 5805–5820 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Shapiro, M. & Brumer, P. Laser control of product quantum state populations in unimolecular reactions. J. Chem. Phys. 84, 4103–4104 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Tannor, D. J. & Rice, S. A. Coherence pulse sequence control of product formation in chemical reactions. Adv. Chem. Phys. 70, 441–523 (1988).

    CAS  Google Scholar 

  13. Brumer, P. & Shapiro, M. Laser control of molecular processes. Annu. Rev. Phys. Chem. 43, 257–282 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Potter, E., Herek, J. L., Pedresen, S., Liu, Q. & Zewail, A. H. Femtosecond laser control of a chemical-reaction. Nature 355, 66–68 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Fourkas, J. T., Wilson, W. L., Wäckerle, G., Frost, A. E. & Fayer, M. D. Picosecond time-scale phase-related optical pulses: measurement of sodium optical coherence decay by observation of incoherent fluorescence. J. Opt. Soc. Am. B 6, 1905–1910 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Heberle, A. P., Baumberg, J. J. & Köhler, K. Ultrafast coherent control and destruction of excitations in quantum wells. Phys. Rev. Lett. 75, 2598–2601 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Salour, M. M. & Cohen-Tannoudji, C. Observation of Ramsey's interference fringes in the profile of doppler-free two-photon resonances. Phys. Rev. Lett. 38, 757–760 (1997).

    Article  ADS  Google Scholar 

  18. Teets, R., Eckstein, J. & Hänsch, T. W. Coherent two-photon excitation by multiple light pulses. Phys. Rev. Lett. 38, 760–764 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Blanchet, V., Nicole, C., Bouchene, M. & Girard, B. Temporal coherent control in two-photon transitions: from optical interferences to quantum interferences. Phys. Rev. Lett. 78, 2716–2719 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Bellini, M., Bartoli, A. & Hänsch, T. W. Two-photon Fourier spectroscopy with femtosecond light pulses. Opt. Lett. 22, 540–542 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Judson, R. S. & Rabitz, H. Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500–1503 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Meshulach, D., Yelin, D. & Silberberg, Y. Adaptive ultrashort pulse compression and shaping. Opt. Commun. 138, 345–348 (1997).

    Article  ADS  Google Scholar 

  23. Yelin, D., Meshulach, D. & Silberberg, Y. Adaptive femtosecond pulse compression. Opt. Lett. 22, 1793–1795 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Meshulach, D., Yelin, D. & Silberberg, Y. Adaptive real-time femtosecond pulse shaping. J. Opt. Soc. Am. B 15, 1615–1619 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Bardeen, C. J. et al. Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280, 151–158 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Cohen-Tannoudji, N. Davidson, T. W. Hänsch and D. Tannor for helpful discussions, D. Yelin for his help in developing pulse-shaping techniques and A. Arie for loan of the Cs cell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Silberberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meshulach, D., Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998). https://doi.org/10.1038/24329

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24329

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing