Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cenozoic magmatism throughout east Africa resulting from impact of a single plume

Abstract

The geology of northern and central Africa is characterized by broad plateaux, narrower swells and volcanism occurring from 45 Myr ago to the present. The greatest magma volumes occur on the >1,000-km-wide Ethiopian and east African plateaux, which are transected by the Red Sea, Gulf of Aden and east African rift systems, active since the late Oligocene epoch. Evidence for one or more mantle plumes having impinged beneath the plateaux comes from the dynamic compensation inferred from gravity studies, the generally small degrees of extension observed and the geochemistry of voluminous eruptive products1,2,3,4. Here we present a model of a single large plume impinging beneath the Ethiopian plateau that takes into account lateral flow and ponding of plume material in pre-existing zones of lithospheric thinning5. We show that this single plume can explain the distribution and timing of magmatism and uplift throughout east Africa. The thin lithosphere beneath the Mesozoic–Palaeogene rifts and passive margins of Africa and Arabia guides the lateral flow of plume material west to the Cameroon volcanic line and south to the Comoros Islands. Our results demonstrate the strong control that the lithosphere exerts on the spatial distribution of plume-related melting and magmatism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstruction of the African plate at 45 Myr ago, before the separation of Africa and Arabia.
Figure 2: Results of plume model.

Similar content being viewed by others

References

  1. Burke, K. The African plate. S. Afr. J. Geol. 99, 339–410 (1996).

    Google Scholar 

  2. Marty, B., Pik, R. & Gezahagen, Y. He isotopic variations in Ethiopian plume lavas: nature of magmatic sources and limit on lower mantle convection. Earth Planet. Sci. Lett. 144, 223–237 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Latin, D., Norry, M. & Tarzey, R. Magmatism in the Gregory rift: evidence for melt generation by a plume. J. Petrol. 34, 1007–1027 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Ebinger, C., Bechtel, T., Forsyth, D. & Bowin, C. Effective elastic plate thickness beneath the East African and Afar plateaux, and isostatic compensation for the uplifts. J. Geophys. Res. 94, 2893–2901 (1989).

    ADS  Google Scholar 

  5. Sleep, N. H. Lateral flow of hot plume material ponded at sub-lithospheric depths. J. Geophys. Res. 101, 28065–28083 (1996).

    Article  ADS  Google Scholar 

  6. Wilson, M. & Giraud, R. Magmatism and rifting in western and central Africa, from Late Jurassic to recent times. Tectonophysics 213, 203–225 (1993).

    Article  ADS  Google Scholar 

  7. Emerick, C. M. & Duncan, R. Age progressive volcanism in the Comores Archipelago, western Indian Ocean and implications for Somali plate motion. Earth. Planet. Sci. Lett. 60, 415–428 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Hendrie, D., Kusznir, N., Morley, C. K. & Ebinger, C. Aquantitative model of rift basin development in the northern Kenya rift: evidence for the Turkana region as an “accommodation zone” during the Palaeogene. Tectonophysics 236 409–438 (1994).

    Article  ADS  Google Scholar 

  9. Prodehl, C. & Mechie, J. Crustal thinning in relationship to the evolution of the Afro-Arabian rift system: A review of seismic refraction data. Tectonophysics 198, 311–327 (1991).

    Article  ADS  Google Scholar 

  10. Green, V., Achauer, U. & Meyer, R. Athree-dimensional image of the crust and upper mantle beneath the Kenya rift. Nature 354, 199–203 (1991).

    Article  ADS  Google Scholar 

  11. Ritsema, J., Nyblade, A., Owens, T., Langston, C. & VanDecar, J. Upper mantle velocity structure beneath Tanzania, E. Africa: implications for the stability of cratonic lithosphere. J. Geophys. Res.(in the press).

  12. George, R. Thermal and Tectonic Controls on Magmatism in the Ethiopian Rift.Thesis, Open Univ.(1997).

    Google Scholar 

  13. Lee, D. C., Halliday, kA. N., Fitton, J. G. & Pol, G. Chronology of volcanism along the Cameroon volcanic line. Earth Planet. Sci. Lett. 123, 119–138 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Sleep, N. Lateral flow and ponding of starting plume material. J. Geophys. Res. 102, 10001–10012 (1997).

    Article  ADS  Google Scholar 

  15. Boyd, F. & Gurney, J. Diamonds in the African lithosphere. Science 232, 272–477 (1986).

    Article  Google Scholar 

  16. Genik, G. Regional framework, structure, and petroleum aspects of rift basins in Niger, Chad, and Central African Republic. Tectonophysics 213, 169–185 (1992).

    Article  ADS  Google Scholar 

  17. Menzies, M., Gallagher, K., Yelland, A. & Hurford, A. Volcanic and nonvolcanic rifted margins of the Red Sea and Gulf of Aden: crustal cooling and margin evolution in Yemen. Geochim. Cosmochim. Acta 61, 2511–2527 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Bosworth, W. Mesozoic and Tertiary rifting in East Africa. Tectonophysics 209, 115–137 (1992).

    Article  ADS  Google Scholar 

  19. Ebinger, C. J., Yemane, T., WoldeGabriel, G. & Aronson, J. Late Eocene-Recent volcanism and faulting in the southern Main Ethiopian rift system. J. Geol. Soc. Lond. 150, 99–108 (1993).

    Article  CAS  Google Scholar 

  20. Baker, J., Snee, L. & Menzies, M. Abrief Oligocene period of flood volcanism in Yemen: implications for the duration and rate of continental flood volcanism at the Afro-Arabian triple junction. Earth. Planet. Sci. Lett. 138, 39–55 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Morley, C. K. et al. Tectonic evolution of the northern Kenya rift. J. Geol. Soc. Lond. 149, 333–348 (1992).

    Article  Google Scholar 

  22. Hofmann, C. Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389, 838–841 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Schilling, J.-G., Kingsley, R., Hanan, B. & McCully, B. Nd-Sr-Pb isotopic variations along the Gulf of Aden: evidence for the Afar mantle plume-lithosphere interaction. J. Geophys. Res. 97, 10927–10966 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Griffiths, R. & Campbell, I. Interaction of mantle plume heads with Earth's surface at the onset of small-scale convection. J. Geophys. Res. 96, 18295–18310 (1991).

    Article  ADS  Google Scholar 

  25. Hill, R. I. Starting plumes and continental break-up. Earth Planet. Sci. Lett. 104, 398–416 (1991).

    Article  ADS  Google Scholar 

  26. White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989).

    Article  ADS  Google Scholar 

  27. Ribe, N. & Christensen, U. Three-dimensional modeling of plume-lithosphere interaction. J. Geophys. Res. 99, 669–682 (1994).

    Article  ADS  Google Scholar 

  28. Watson, S. & McKenzie, D. Melt generation by plumes: a study of Hawaiian volcanism. J. Petrol. 32, 501–537 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Crough, S. T. Thermal origin of midplate swells. Geophys. J. R. Astron. Soc. 55, 451–469 (1978).

    Article  ADS  Google Scholar 

  30. Dawson, B. & Smith, M. Veined and metasomatised peridotites from Pello Hill, Tanzania: evidence for anomalously light mantle beneath the Tanzania sector of the eastern rift valley. Contrib. Mineral. Petrol. 100, 510–527 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Bosworth, W. & Morley, C. K. Structural and stratigraphic evolution of the Anza rift, Kenya. Tectonophysics 236, 93–115 (1994).

    Article  ADS  Google Scholar 

  32. Coffin, M. F., Rabinowitz, P. & Houtz, R. E. Crustal structure in the western Somali basin. Geophys. J. R. Astron. Soc. 86, 331–365 (1986).

    Article  ADS  Google Scholar 

  33. Richards, M., Duncan, R. & Courtillot, V. Flood basalts and hotspot tracks: plume heads and tails. Science 246, 103–107 (1989).

    Article  ADS  CAS  Google Scholar 

  34. van der Meer, F. & Cloetingh, S. Intraplate stresses and the subsidence history of the Sirte basin (Libya). Tectonophysics 226, 37–58 (1993).

    Article  ADS  Google Scholar 

  35. Coffin, M. & Rabinowitz, P. Evolution of the Conjugate Madagascan and W. Somali Basin (Spec. Publ. 226, Geol. Soc. Am., Boulder, Colorado, (1988)).

    Google Scholar 

  36. Huppert, H. E. The propagation of two-dimensional axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 43–58 (1982).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.J.E. completed this work while on sabbatical leave at Stanford University. We thank G. Davies for detailed comments, and M. Menzies, G. Thompson, K. Burke, C. Ruppel, T. Parsons, R. George, G. Barth and J. Cann for discussions, which improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Ebinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebinger, C., Sleep, N. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395, 788–791 (1998). https://doi.org/10.1038/27417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27417

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing