Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gene transfer to the nucleus and the evolution of chloroplasts

Abstract

Photosynthetic eukaryotes, particularly unicellular forms, possess a fossil record that is either wrought with gaps or difficult to interpret, or both. Attempts to reconstruct their evolution have focused on plastid phylogeny, but were limited by the amount and type of phylogenetic information contained within single genes1,2,3,4,5. Among the 210 different protein-coding genes contained in the completely sequenced chloroplast genomes from a glaucocystophyte, a rhodophyte, a diatom, a euglenophyte and five land plants, we have now identified the set of 45 common to each and to a cyanobacterial outgroup genome. Phylogenetic inference with an alignment of 11,039 amino-acid positions per genome indicates that this information is sufficient — but just barely so — to identify the rooted nine-taxon topology. We mapped the process of gene loss from chloroplast genomes across the inferred tree and found that, surprisingly, independent parallel gene losses in multiple lineages outnumber phylogenetically unique losses by more than 4:1. We identified homologues of 44 different plastid-encoded proteins as functional nuclear genes of chloroplast origin, providing evidence for endosymbiotic gene transfer to the nucleus in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plastid phylogeny interpreted from chloroplast proteins.
Figure 2: Phylogenetic distribution of gene loss from chloroplast genomes.

Similar content being viewed by others

References

  1. Palenik, B. & Haselkorn, R. Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355, 265–267 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Urbach, E., Robertson, D. L. & Chisolm, S. W. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355, 267–270 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Helmchen, T. A., Bhattacharya, D. & Melkonian, M. Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships of plastids. J. Mol. Evol. 41, 203–210 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Van de Peer, Y., Rensing, S., Maier, U.- & De Wachter, R. Substitution rate calibraiton of small subunit RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc. Natl Acad. Sci. USA 93, 7744–7748 (1996).

    Article  Google Scholar 

  5. Melkonian, M. Systematics and evolution of the algae: Endocytobiosis and the evolution of the major algal lineages. Progr. Bot. 57, 281–311 (1996).

    Google Scholar 

  6. Hallick, R. B.et al. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 21, 3537–3544 (1993).

    Article  CAS  Google Scholar 

  7. Kaneko, T.et al. Sequence analysis of the gneome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assigment of potential protein-coding regions. DNA Res. 3, 109–136 (1996).

    Article  CAS  Google Scholar 

  8. Martin, W. & Schnarrenberger, C. The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr. Genet. 32, 1–18 (1997).

    Article  CAS  Google Scholar 

  9. Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  10. Adachi, J. & Hasegawa, M. Computer Science Monographs, No. 28. MOLPHY Version 2.3: Programs for Molecular Phylogenetics Based on Maximum Likelihood.(Institute of Statistical Mathematics, Tokyo, 1996).

  11. Akaike, H. Anew look at the statistical model identification. IEEE Trans. Autom. Contr. CA19, 716–723 (1974).

    Article  ADS  Google Scholar 

  12. Hedtke, B., Börner, T. & Weihe, A. Mitochondrial and chloroplast phage-like RNA polymerases in Arabidopsis. Science 277, 809–811 (1997).

    Article  CAS  Google Scholar 

  13. Naylor, G. J. P. & Brown, W. M. Structural biology and phylogenetic estimation. Nature 388, 527–528 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Adachi, J. & Hasegawa, M. Model of amino acid substitution in proteins encoded by mitochondrial DNA. J. Mol. Evol. 42, 459–468 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Lockhart, P. J., Steel, M. A., Hendy, M. D. & Penny, D. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11, 605–612 (1994).

    CAS  PubMed  Google Scholar 

  16. Lockhart, P. J., Larkum, A. W., Steel, M., Waddell, P. J. & Penny, D. Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. Proc. Natl Acad. Sci. USA 93, 1930–1934 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Gibbs, S. P. The chloroplast of Euglena may have evolved from symbiotic green algae. Can. J. Bot. 56, 2883–2889 (1978).

    Article  Google Scholar 

  18. Cavalier-Smith, T. Kingdom Protozoa and its 18 phyla. Microbiol. Rev. 57, 953–994 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Henze, K.et al. Anuclear gene of eubacterial origin in Euglena reflects cryptic endosymbioses during protist evolution. Proc. Natl Acad. Sci. USA 92, 9122–9126 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Cavalier-Smith, T.et al. Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny. Eur. J. Phycol. 31, 315–328 (1996).

    Article  Google Scholar 

  21. Kowallik, K. V., Stöbe, B., Schaffran, I., Kroth-Pancic, P. & Freier, U. The chloroplast genome of a chlorophyll a+c containing alga, Odontella sinensis. Plant Mol. Biol. Reptr. 13, 336–342 (1995).

    Article  CAS  Google Scholar 

  22. Löffelhardt, W. & Bohnert, H. J. in The Molecular Biology of Cyanobacteria (ed. Bryant, D. A.) 56–89 (Kluwer, Dordrecht, 1994).

    Google Scholar 

  23. Wakasugi, T.et al. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of black pine Pinus thunbergii. Proc. Natl Acad. Sci. USA 91, 9794–9798 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Herrmann, R. G. in Eukaryotism and Symbiosis (eds Schenk, H. E. A., Herrmann, R. G., Jeon, K. W. & Schwemmler, W.) 73–118 (Springer, Heidelberg, 1997).

    Book  Google Scholar 

  25. Lynch, M. Mutation accumulation in transfer RNAs: Molecular evidence for Muller's ratchet in mitochondrial genomes. Mol. Biol. Evol. 13, 209–220 (1996).

    Article  CAS  Google Scholar 

  26. Moran, N. A. Accelerated evolution and Muller's ratchet in endosymbiotic bacteria. Proc. Natl Acad. Sci. USA 93, 2873–2878 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Felsenstein, J. PHYLIP (Phylogeny inference package) manual, version 3.5c(Univ. Washington, Seattle, Dept Genetics, 1993).

  29. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  30. Maier, R. M., Neckermann, K., Igloi, G. L. & Kössel, H. Complete sequence of maize chloroplast genome: Gene content, hotspots of divergence and the tuning of genetic information by transcript editing. J. Mol. Biol. 251, 614–628 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. G. Herrmann for discussion, H. Phillipe for comments on the manuscript, the Rechenzentrum der Universität Braunschweig for use of computer facilities, and the Deutsche Forschungsgemeinschaft (W.M. and K.V.K.) and the Ministry of Education, Science, Sports and Culture of Japan (M.H.) for financial support. B.S. is the recipient of a psotdoctoral stipend from the DFG; V.G. is the recipient of a Ph.D. stipend from DAAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, W., Stoebe, B., Goremykin, V. et al. Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393, 162–165 (1998). https://doi.org/10.1038/30234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30234

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing