Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An immobile nucleic acid junction constructed from oligonucleotides

Abstract

Base-paired DNA duplexes involving oligonucleotide model systems have provided the major source of detailed structural and dynamic information about double helical structure1. Triple- and quadruple-branched ‘junction’ structures of DNA have a transient existence as intermediates in the replication or recombination of DNA molecules2–5 while cruciforms may be inducible by negatively supercoiling closed circular DNA6–11. However, it has not been possible to investigate these forms structurally at high resolution in short-chain molecules, where the junction will yield a significant component of the signal, because these naturally occurring intermediates are inherently unstable, due to internal sequence symmetry, which permits their resolution to double helices, via branchpoint migration12–15. We have recently proposed that migration can be eliminated to yield immobile junctions from oligonucleotides16–19 by combining sequence symmetry constraints with equilibrium calculations. We present here electrophoretic and UV optical absorbance experiments which indicate that four hexadecadeoxynucleotides (Fig. 1) indeed do form a stable tetrameric junction complex in solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Biomolecular Stereodynamics, Vol. 1 (ed. Sarma, R. H.) 1–343 (Adenine, New York, 1981).

  2. Dressler, D. & Potter, H. A. Rev. Biochem. 51, 727–761 (1982).

    Article  CAS  Google Scholar 

  3. Holliday, R. Genet. Res. 5, 282–304 (1964).

    Article  Google Scholar 

  4. Sigal, N. & Alberts, B. J. molec. Biol. 71, 789–791 (1972).

    Article  CAS  Google Scholar 

  5. Nash, H. A. Rev. Genet. 15, 143–167 (1981).

    Article  CAS  Google Scholar 

  6. Platt, J. R. Proc. natn. Acad. Sci. U.S.A. 41, 181–183 (1955).

    Article  ADS  CAS  Google Scholar 

  7. Gierer, A. Nature 212, 1460–1461 (1966).

    Article  ADS  Google Scholar 

  8. Hseih, T. & Wang, J. C. Biochemistry 14, 527–535 (1975).

    Article  Google Scholar 

  9. Gellert, M., Mizuuchi, K., O'Dean, M. H., Ohmori, H. & Tomizawa, J. Cold Spring Harb. Symp. quant. Biol. 43, 33–40 (1979).

    Article  Google Scholar 

  10. Lilley, D. M. J. Proc. natn. Acad. Sci. U.S.A. 77, 6468–6472 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Panayotatos, N. & Wells, R. D. Nature 289, 466–470 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Thompson, B. J., Camien, M. N. & Warner, R. C. Proc. natn. Acad. Sci. U.S.A. 73, 2299–2303 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Warner, R. C., Fishel, R. & Wheeler, F. Cold Spring Harb. Symp. quant. Biol. 43, 957–968 (1979).

    Article  CAS  Google Scholar 

  14. Meselson, M. J. molec. Biol. 71, 795–798 (1972).

    Article  CAS  Google Scholar 

  15. Seeman, N. C. & Robinson, B. H. in Biomolecular Stereodynamics Vol. 1 (ed. Sarma, R. H.) 279–300 (Adenine, New York, 1981).

    Google Scholar 

  16. Seeman, N. C. in Biomolecular Stereodynamics (ed. Sarma, R. H.) 269–277 (Adenine, New York, 1981).

    Google Scholar 

  17. Seeman, N. C. J. theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  18. Seeman, N. C. & Kallenbach, N. R. in Nucleic Acids: The Vectors of Life (ed. Pullman, B.) (Reidel, Dordrecht, in the press).

  19. Seeman, N. C. & Kallenbach, N. R. Biophys. J. (in the press).

  20. Fangman, W. L. Nucleic Acids Res. 5, 653–665 (1978).

    Article  CAS  Google Scholar 

  21. Sealey, P. G. & Southern, E. M. in Gel Electrophoresis of Nucleic Acids (eds. Rickwood, D. & Hames, B. D.) 39–76 (IRL, Oxford, 1982).

    Google Scholar 

  22. Rodbard, D. & Chrambach, A. Analyt. Biochem. 40, 95–134 (1971).

    Article  CAS  Google Scholar 

  23. Freifelder, D. M. Physical Biochemistry, 377–393 (Freeman, San Francisco, 1976).

    Google Scholar 

  24. Van Holde, K. E. Physical Biochemistry, 168–169 (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallenbach, N., Ma, RI. & Seeman, N. An immobile nucleic acid junction constructed from oligonucleotides. Nature 305, 829–831 (1983). https://doi.org/10.1038/305829a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305829a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing