Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Corals on seamount peaks provide evidence of current acceleration over deep-sea topography

Abstract

Geological and physical studies of seamounts have suggested the existence of distinct deep-sea habitats, characterized by exposed rocky bottom and a unique current regime1–9. However, few biological data have been collected for deep seamounts10–12. Here we present some of the first quantitative observations of hard-bottom (non-hydrothermal) fauna in the deep sea. These observations show that black corals (antipatharians) and horny corals (gorgonians) present on the slopes of a multi-peaked seamount are more abundant near peaks, compared with mid-slope sites at corresponding depths. On narrow peaks corals are most abundant on the crest, whereas on wide peaks, coral densities are highest at the edge of the crest. The abundance of corals also increases on knobs and pinnacles. Physical models and observations2,4–9,13–15, together with our direct measurements, suggest that the seamount topography affects the local current regime. Corals appear to benefit from flow acceleration, and some of their patterns of distribution can be explained by current conditions. These results suggest that suspension feeders have some potential as indicators of prevailing currents at deep hard-bottom sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lonsdale, P., Normark, W. R. & Newman, W. A. Bull. geol. Soc. Am. 83, 289–315 (1972).

    Article  Google Scholar 

  2. Hogg, N. G. J. Fluid Mech. 58, 517–537 (1973).

    Article  ADS  Google Scholar 

  3. Roberts, D. G., Hogg, N. G., Bishop, D. G. & Flewellen, C. G. Deep-Sea Res. 21, 175–184 (1974).

    Google Scholar 

  4. Huppert, H. E. J. Fluid Mech. 67, 397–412 (1975).

    Article  ADS  Google Scholar 

  5. Huppert, H. E. & Bryan, K. Deep Sea Res. 23, 655–679 (1976).

    Google Scholar 

  6. Owens, W. B. & Hogg, N. G. Deep Sea Res. 27, 1029–1045 (1980).

    Article  ADS  Google Scholar 

  7. Gould, W. J., Hendry, R. & Huppert, H. E. Deep-Sea Res. 28, 409–440 (1981).

    Article  ADS  Google Scholar 

  8. Ericksen, C. J. geophys. Res. 87, 525–538 (1982).

    Article  ADS  Google Scholar 

  9. Roden, G. I. & Taft, B. A. J. geophys. Res. 90, 839–856 (1985).

    Article  ADS  Google Scholar 

  10. Pratt, R. M. in Deep-Sea Photography (ed. Hersey, J. B.) 145–158 (Johns Hopkins University Press, Baltimore, 1967).

    Google Scholar 

  11. Raymore, P. A. Pacif. Sci. 36, 15–34 (1982).

    Google Scholar 

  12. Grigg, R. W. Mar. Ecol. 5, 57–74 (1984).

    Article  ADS  Google Scholar 

  13. Genin, A. & Boehlert, G. W. J. mar. Res. 43, 907–924 (1985).

    Article  CAS  Google Scholar 

  14. Genin, A., Boehlert, G. W. & Lonsdale, P. F. Eos 65, 969 (1984).

    Google Scholar 

  15. Fukasawa, M. & Nagata, Y. J. oceanogr. Soc. Japan. 34, 41–49 (1978).

    Article  Google Scholar 

  16. Sebens, K. P. Proc. natn. Acad. Sci. U.S.A. 81, 5473–5477 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Pequegnat, W. E. Ecology 45, 272–283 (1964).

    Article  Google Scholar 

  18. Grigg, R. W. & Maragos, J. E. Ecology 55, 387–395 (1974).

    Article  Google Scholar 

  19. Reid, J. L. Jr Intermediate Waters of the Pacific Ocean (Johns Hopkins University Press, Baltimore, 1965).

    Google Scholar 

  20. Spiess, F. N. & Tyce, R. C. Scripps Instn. Oceanogr. Ref. 7374 (1973).

  21. Sara, M. & Vacelet, T. Traite de Zool 3, 462–576 (1973).

    Google Scholar 

  22. Loya, Y. Bull. mar. Sci. 26, 450–466 (1976).

    ADS  Google Scholar 

  23. Wunsch, C. J. Fluid Mech. 35, 131–144 (1969).

    Article  ADS  Google Scholar 

  24. Cacchione, D. & Wunsch, C. J. Fluid Mech. 66, 223–239 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genin, A., Dayton, P., Lonsdale, P. et al. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59–61 (1986). https://doi.org/10.1038/322059a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322059a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing