Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New explanation for chain folding in polymers

Abstract

Polymer crystals are characteristically thin in the molecular direction1 so that materials such as polyethylene and nylon have an extremely finely divided texture consisting of crystal lamellae interspaced with non-crystalline regions (melting points are depressed by 20 °C or more). Many distinctive properties of these polymers follow as a consequence of this phenomenon, often known as chain folding because molecules generally fold back and forth across the thin dimension of the crystals. The currently accepted explanation of the origin of chain folding in terms of 'nucleation' ('LH' theories2) appears to be inconsistent with the observed shapes of crystals3 (see also Wunderlich4). In this paper I describe how an approximate treatment of an alternative model5,6 involving rough growth surfaces and molecular 'pinning' can give analytical results in line with experiment. The aim is to derive the result in such a way as to concentrate on the physical mechanisms involved and to discuss the kinetic barriers caused by molecular continuity. If there turns out to be any connection between chain folding of synthetic molecules and folding in proteins, it will be clear that the models discussed here may be more readily extended to the latter than LH models2, because LH models2 are specific to crystals and not applicable, for example, to the ribbon structures which are formed from β sheets7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Keller, A. Phil. Mag. 2, 1171–1175 (1957).

    Article  ADS  CAS  Google Scholar 

  2. Lauritzen, J. I. & Hoffman, J. D. J. Res. natn. Bur. Stand. 64A, 73–102 (1960).

    Article  CAS  Google Scholar 

  3. Sadler, D. M. Polymer 24, 1401–1409 (1983).

    Article  CAS  Google Scholar 

  4. Wunderlich, B. Discuss. Faraday Soc. 68, 239 (1979).

    Article  Google Scholar 

  5. Sadler, D. M. & Gilmer, G. H. Polymer 25, 1446–1452 (1984).

    Article  CAS  Google Scholar 

  6. Sadler, D. M. & Gilmer, G. H. Phys. Rev. Lett. 56, 2708–2711 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Ptitsyn, U. B. & Finkelstein, A. V. Q. Rev. Biophys. 13, 339–386 (1980).

    Article  CAS  Google Scholar 

  8. Atkins, E. D. T. Discuss. Faraday Soc. 68, 409–411 (1979).

    Google Scholar 

  9. Point, J. J. Macromolecules 12, 770–775 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Kawai, T. & Keller, A. Phil. Mag. 11, 1165–1177 (1965).

    Article  ADS  CAS  Google Scholar 

  11. Barham, P. J., Chivers, R. A., Keller, A., Martinez-Salazar, J. & Organ, S. J. J. mater. Sci. 20, 1625–1630 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Sadler, D. M. J. Polym. Sci., Phys. Ed. 23, 1533–1554 (1985); Polymer Commun. 27, 140–145 (1986); J. chem. Phys. (in the press) Polymer (submitted).

    Article  CAS  Google Scholar 

  13. Sadler, D. M. & Gilmer, G. H. Phys. Rev. (in the press).

  14. Hoffman, J. D., Davis, G. T. & Lauritzen, J. I. in Treatise on Solid State Chemistry (ed. Hannay, N. B.) 497–614 (Plenum, 1976).

    Book  Google Scholar 

  15. Frank, F. C. & Tosi, M. Proc. R. Soc. 263A, 323–339 (1961).

    ADS  Google Scholar 

  16. Hoffman, J. D. et al. Kolloid Zeitschrift fur Polymere 231, 564–592 (1969).

    Article  CAS  Google Scholar 

  17. Lauritzen, J. I., Passaglia, E. & DiMarzio, E. A. J. chem. Phys. 45, 4444–4454 (1966).

    Article  ADS  CAS  Google Scholar 

  18. Frank, F. C. J. Cryst. Growth 22, 233–236 (1974).

    Article  ADS  CAS  Google Scholar 

  19. Lauritzen, J. I. J. appl. Phys. 44, 4353–4359 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Hoffman, J. D. Polymer 24, 3–26 (1983).

    Article  CAS  Google Scholar 

  21. Hoffman, J. D. Polymer 23, 656–670 (1982).

    Article  CAS  Google Scholar 

  22. Hoffman, J. D. Polymer 26, 803–810; 1763–1778 (1985).

    Article  CAS  Google Scholar 

  23. Keith, H. D. J. Appl. Phys. 35, 3115–3126 (1964).

    Article  ADS  CAS  Google Scholar 

  24. Sadler, D. M., Barber, M., Lark, G. & Hill, M. J. Polymer 27, 25–34 (1986).

    Article  CAS  Google Scholar 

  25. Avron, J. E. et al. Phys. Rev. Lett. 45, 814–817 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Sadler, D. M. Polymer Commun. 25, 196–201 (1984).

    CAS  Google Scholar 

  27. Organ, S. & Keller, A. J. Polym. Sci., Phys Educ. 24, 2319–2335 (1986).

    Article  CAS  Google Scholar 

  28. Sadler, D. M. in Structure of Crystalline Polymers 125–180 (ed. Hall, I.) (Applied Science, Barking, 1984).

    Google Scholar 

  29. Mandelkern, L., Fatou, J. G. & Howard, C. J. Chem. Phys. 69, 956–959 (1965).

    Article  CAS  Google Scholar 

  30. Ungar, G. & Keller, A. Polymer (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadler, D. New explanation for chain folding in polymers. Nature 326, 174–177 (1987). https://doi.org/10.1038/326174a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326174a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing