Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Flocculation clustering and weakness of ceramics

Abstract

IT is well-known that the mechanical properties of ceramics are sensitive to flaws which cause weakness1,2. The most damaging flaws are large gas bubbles or particulates which contaminate the ceramic moulding during the compaction process, and which are not healed by sintering3–5. But even when great care is taken to remove such extraneous flaws, for example by filtering or by fabricating under clean room conditions, the strength of the ceramic does not rise to the level expected from the fine structure of the material (M. Real, personal communication), suggesting that some more fundamental intrinsic problem limits the strength. Here we describe a new phenomenon, flocculation clustering, which can account for the low strengths observed. An equation is derived to predict the size of the clusters and is verified by experiments on flocculation of titania sols. We find that flocculation clustering can also be observed in other colloidal systems, such as silica and polystyrene dispersions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davidge, R. W. & Tappin, G. J. Mater. Sci. 3, 165–173 (1968).

    Article  ADS  CAS  Google Scholar 

  2. Davidge, R. W. & Evans, A. G. Mater. Sci. Engng 6, 281–298 (1970).

    Article  CAS  Google Scholar 

  3. Lange, F. F. J. Am. Ceram. Soc. 66, 396–398 (1983).

    Article  CAS  Google Scholar 

  4. Lange, F. F. & Metcalf, M. J. Am. Ceram. Soc. 66, 398–406 (1983).

    Article  CAS  Google Scholar 

  5. Lange, F. F., David, B. I. & Aksay, I. A. J. Am. Ceram. Soc. 66, 407–408 (1983).

    Article  CAS  Google Scholar 

  6. Alford, N. McN., Birchall, J. D. & Kendall, K. Nature 330, 51–53 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Alford, N. McN., Kendall, K., Clegg, W. J. & Birchall, J. D. Adv. Ceram. Mater. 3, 113–117 (1988).

    Article  CAS  Google Scholar 

  8. Griffith, A. A. Phil. Trans. R. Soc. Lond. A221, 163–198 (1920).

    Article  Google Scholar 

  9. Zettlemoyer, A. C. (ed.) Nucleation Phenomena Vol. 7 (Elsevier, New York 1977).

  10. Larson, M. A. & Garside, J. J. chem. Engng Sci. 41, 1285–1290 (1986).

    Article  CAS  Google Scholar 

  11. Binder, K & Stauffer, D. Adv. Phys. 5, 343–396 (1976).

    Article  ADS  Google Scholar 

  12. Hoare, M. R., Pal, P. & Wegener, P. P. J. Colloid Interface Sci. 75, 126–137 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Johnson, K. L., Kendall, K. & Roberts, A. D. Proc. R. Soc. Lond. A324, 301–313 (1971).

    Article  ADS  CAS  Google Scholar 

  14. Kendall, K. & Padget, J. C. Int. J. Adhesion Adhesives 2, 149–154 (1982).

    Article  CAS  Google Scholar 

  15. Kendall, K., Alford, N. McN. & Birchall, J. D. Spec. Ceram. 8, 255–265 (1986).

    Google Scholar 

  16. Kendall, K., Alford, N. McN. & Birchall, J. D. Nature 325, 794–796 (1987).

    Article  ADS  CAS  Google Scholar 

  17. European Patent Publn no. 0288208 (1988).

  18. Santacesaria, E., Tonello, M., Storti, G., Pace, R. C. & Carra, S. J. Colloid Interface Sci. 111, 44–53 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Strickland-Constable, R. F. Kinetics and Mechanism of Crystallisation (Academic Press, New York, 1968).

    Google Scholar 

  20. Wilcox, W. R. J. Cryst. Growth 65, 133–142 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Stober, W., Fink, A. & Bohn, E. J. Colloid Interface Sci. 26, 62–66 (1968).

    Article  ADS  Google Scholar 

  22. Bogush, G. H. & Zuboski, C. F. Conf. Proc. on Microstructures '86 Berkeley, California (1986).

  23. Martin, J. E. Phys. Rev. A36, 3415–3341 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Cornell, R. M., Goodwin, J. W. & Ottewill, R. H. J. Colloid Interface Sci. 71, 254–266 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Feeney, P. J., Geissler, E., Gilbert, P. G. & Napper, D. H. J. Colloid Interface Sci. 121, 508–513 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Fitch, R. M. & Watson, R. C. J. Colloid Interface Sci. 68, 14–20 (1979).

    Article  ADS  CAS  Google Scholar 

  27. Fitch, R. M. Brit. Polymer J. 5, 467–469 (1973).

    Article  CAS  Google Scholar 

  28. Kendall, K. Powder Met. 31, 28–31 (1988).

    CAS  Google Scholar 

  29. Kendall, K. Br. Ceram. Proc. (in the press).

  30. Kendall, K. Powder Technol. (in the press).

  31. Weiss, L. The Cell Periphery, Metastasis and other Contact Phenomena Ch. 5 (North Holland, Amsterdam, 1967).

    Google Scholar 

  32. Ruckenstein, E. & Gourisankat, S. V. J. Colloid Interface Sci. 101, 436–451 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendall, K., Alford, N., Clegg, W. et al. Flocculation clustering and weakness of ceramics. Nature 339, 130–132 (1989). https://doi.org/10.1038/339130a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339130a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing