Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation

Abstract

THE phenomenon of long-term potentiation (LTP), a long lasting increase in the strength of synaptic transmission which is due to brief, repetitive activation of excitatory afferent fibres, is one of the most striking examples of synaptic plasticity in the mammalian brain. In the CA1 region of the hippocampus, the induction of LTP requires activation of NMDA (N-methyl-D-aspartate) receptors by synaptically released glutamate1 with concomitant postsynaptic membrane depolarization2-5. This relieves the voltage-dependent magnesium block of the NMD A-receptor ion channel6,7, allowing calcium to flow into the dendritic spine8-10. Although calcium has been shown to be a necessary trigger for LTP (refs 11,12), little is known about the immediate biochemical processes that are activated by calcium and are responsible for LTP. The most attractive candidates have been calcium/cal-modulin-dependent protein kinase II (CaM-KII) (refs 13-16), protein kinase C (refs 17-19), and the calcium-dependent protease, calpain20. Extracellular application of protein kinase inhibitors to the hippocampal slice preparation blocks the induction of LTP (refs 21-23) but it is unclear whether this is due to a pre- and/or postsynaptic action. We have found that intracellular injection into CA1 pyramidal cells of the protein kinase inhibitor H-7, or of the calmodulin antagonist calmidazolium, blocks LTP. Further-more, LTP is blocked by the injection of synthetic peptides that are potent calmodulin antagonists and inhibit CaM-KII auto- and substrate phosphorylation. These findings demonstrate that in the postsynaptic cell both activation of calmodulin and kinase activity are required for the generation of LTP, and focus further attention on the potential role of CaM-KII in LTP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  2. Gustafsson, B., Wigström, H., Abraham, W. C. & Huang, Y.-Y. J. Neurosci. 7, 774–780 (1987).

    Article  CAS  Google Scholar 

  3. Kelso, S. R., Ganong A. H. & Brown, T. H. Proc. natn. Acad. Sci. U.S.A. 83, 5326–5330 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Malinow, R. & Miller, J. P. Nature 320, 529–530 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Sastry, B. R., Goh, J. W. & Auyeung, A. Science 232, 988–990 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 261–263 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Ascher, P. & Nowak, L. J. Physiol., Lond. 399, 247–266 (1988).

    Article  CAS  Google Scholar 

  9. Jahr, C. E. & Stevens, C. F. Nature 325, 522–525 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Mayer, M. L. & Westbrook, G. L. J. Physiol., Lond 394, 501–527 (1987).

    Article  CAS  Google Scholar 

  11. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305, 719–721 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. Science 242, 81–84 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Kennedy, M. B., Bennett, M. K. & Erondu, N. E. Proc. natn. Acad. Sci. U.S.A. 80, 7357–7361 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Kelly, P. T., McGuinness, T. L. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 81, 945–949 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Miller, S. G. & Kennedy, M. B. Cell 44, 861–870 (1986).

    Article  CAS  Google Scholar 

  16. Lisman, J. E. & Goldring, M. A. Proc. natn. Acad. Sci. U.S.A. 85, 5320–5324 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Akers, R. E., Lovinger, D. M., Colley, P. A., Linden, D. J. & Routtenberg, A. Science 231, 587–589 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Malenka, R. C., Madison, D. V. & Nicoll, R. A. Nature 321, 175–177 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Hu, G. Y. et al. Nature 328, 426–429 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Lynch, G. & Baudry, M. Science 224, 1057–1063 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Malinow, R., Madison, D. V. & Tsien, R. W. Nature 335, 820–824 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Reymann, K. G., Frey, U., Jork, R. & Matthies, H. Brain Res. 440, 305–314 (1988).

    Article  CAS  Google Scholar 

  23. Lovinger, D. M., Wong, K. L., Murakami, K. & Routtenberg, A. Brain Res. 436, 177–183 (1987).

    Article  CAS  Google Scholar 

  24. Hidaka, H., Inagaki, M., Kawamoto, S. & Sasaki, Y. Biochemistry 23, 5036–5041 (1984).

    Article  CAS  Google Scholar 

  25. Mody, I., Baimbridge, K. G. & Miller, J. J. Neuropharmacology 23, 625–631 (1984).

    Article  CAS  Google Scholar 

  26. Finn, R. C., Browning, M. & Lynch, G. Neurosci. Lett. 19, 103–108 (1980).

    Article  CAS  Google Scholar 

  27. Reymann, K. G., Brodemann, R., Kase, H. & Matthies, H. Brain Res. 461, 388–392 (1988).

    Article  CAS  Google Scholar 

  28. Kuo, J. F., Schatzman, R. C., Turner, R. S. & Mazzei, G. J. Molec. cell. Endocrinol. 35, 65–73 (1984).

    Article  CAS  Google Scholar 

  29. Greenberg, D. A., Carpender, C. L. & Messing, R. O. Brain Res. 404, 401–404 (1987).

    Article  CAS  Google Scholar 

  30. Kelly, P. T., Weinberger, R. P. & Waxham, M. N. Proc. natn. Acad Sci. U.S.A. 85, 4991–4995 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Saitoh, T. & Schwartz, J. H. J. Cell Biol. 100, 835–842 (1985).

    Article  CAS  Google Scholar 

  32. Kauer, J. A., Malenka, R. C. & Nicoll, R. A. Neuron 1, 911–917 (1988).

    Article  CAS  Google Scholar 

  33. Muller, D., Joly, M. & Lynch, G. Science 242, 1694–1697 (1988).

    Article  ADS  CAS  Google Scholar 

  34. Muller, D. & Lynch, G. Proc. natn. Acad. Sci. U.S.A. 85, 9346–9350 (1988).

    Article  ADS  CAS  Google Scholar 

  35. Davies, S. N., Lester, R. A. J., Reymann, K. G. & Collingridge, G. L. Nature 338, 500–503 (1989).

    Article  ADS  CAS  Google Scholar 

  36. Kauer, J. A., Malenka, R. C. & Nicoll, R. A. Nature 334, 250–252 (1988).

    Article  ADS  CAS  Google Scholar 

  37. Williams, J. H. & Bliss, T. V. P. Neurosci. Lett. 88, 81–85 (1988).

    Article  CAS  Google Scholar 

  38. Wooten, M. W., Vandenplas, M. & Nel, A. E. Eur. J. Biochem. 164, 461–467 (1987).

    Article  CAS  Google Scholar 

  39. Nicoll, R, A. & Alger, B. E. J. Neurosci. Meth. 4, 153–156 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malenka, R., Kauer, J., Perkel, D. et al. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340, 554–557 (1989). https://doi.org/10.1038/340554a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340554a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing