Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Force generation of organelle transport measured in vivo by an infrared laser trap

Abstract

ORGANELLE transport along microtubules is believed to be mediated by organelle-associated force-generating molecules1. Two classes of microtubule-based organelle motors have been identified: kinesin2–7 and cytoplasmic dynein8–12. To correlate the mechanochemical basis of force generation with the in vivo behaviour of organelles, it is important to quantify the force needed to propel an organelle along microtubules and to determine the force generated by a single motor molecule. Measurements of force generation are possible under selected conditions in vitro (for example, see refs 13 and 14), but are much more difficult using intact or reactivated cells. Here we combine a useful model system for the study of organelle transport, the giant amoeba Reticulomyxa15, with a novel technique for the non-invasive manipulation of and force application to subcellular components, which is based on a gradient-force optical trap, also referred to as 'optical tweezers'16–19. We demonstrate the feasibility of using controlled manipulation of actively translocating organelles to measure direct force. We have determined the force driving a single organelle along microtubules, allowing us to estimate the force generated by a single motor to be 2.6 × 10-7 dynes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Warner, F. D. & McIntosh, J. R. (eds) in Cell Movement Vol. 2 (Liss, New York, 1989).

  2. Brady, S. T. Nature 317, 73–75 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39–50 (1985).

    Article  CAS  Google Scholar 

  4. Scholey, J. M., Porter, M. E., Grissom, P. M. & McIntosh, J. R. Nature 318, 483–486 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Schroer, T. A., Schnapp, B. J., Reese, T. S. & Scheetz, M. P. J. Cell Biol. 107, 1785–1792 (1988).

    Article  CAS  Google Scholar 

  6. Pfister, K. K., Wagner, M. C., Stenoien, D. L., Brady, S. T. & Bloom, G. S. J. Cell Biol. 108, 1453–1463 (1988).

    Article  Google Scholar 

  7. Brady, S. T., Pfister, K. K. & Bloom, G. S. Proc. natn Acad. Sci. U.S.A. 87, 1061–1065 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Paschal, B. M., Shpetner, H. S. & Vallee, R. B. J. Cell Biol. 105, 1273–1282 (1987).

    Article  CAS  Google Scholar 

  9. Paschal, B. M. & Vallee, R. B. Nature 330, 181–183 (1988).

    Article  ADS  Google Scholar 

  10. Lye, R. J., Porter, M. E., Scholey, J. M. & McIntosh, J. R. Cell 51, 309–318 (1988).

    Article  Google Scholar 

  11. Euteneuer, U., Koonce, M. P., Pfister, K. K. & Schliwa, M. Nature 332, 176–178 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Shroer, T. A., Steuer, E. & Sheetz, M. P. Cell 56, 937–946 (1989).

    Article  Google Scholar 

  13. Kishino, A. & Yanagida, T. Nature 334, 74–76 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Howard, J., Hudspeth, A. J. & Vale, R. D. Nature 342, 154–158 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Euteneuer, U. et al. in Cell Movement Vol. 2 (eds Warner, F. D. & McIntosh, J. R.) 155–167 (Liss, New York, 1989).

    Google Scholar 

  16. Ashkin, A. & Dziedzic, J. M. Science 235, 1517–1520 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Ashkin, A. & Dziedzic, J. M. & Yamane, T. Nature 330, 769–771 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Ashkin, A. & Dziedzic, J. M. Proc. natn. Acad. Sci. U.S.A. 86, 7914–7918 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Block, S. M., Blair, D. F. & Berg, H. C. Nature 338, 514–517 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Koonce, M. P. & Schliwa, M. J. Cell Biol. 103, 605–612 (1986).

    Article  CAS  Google Scholar 

  21. Euteneuer, U., Johnson, K. B. & Schliwa, M. Eur. J. Cell Biol. 50, 34–40 (1989).

    Google Scholar 

  22. Schliwa, M., Shimizu, T., Vale, R. D. & Euteneuer, U. J. Cell Biol. (in the press).

  23. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Optics Lett. 11, 288–290 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Koonce, M. P. & Schliwa, M. J. Cell Biol. 100, 322–326 (1985).

    Article  CAS  Google Scholar 

  25. Kamimura, S. & Takahashi, K. Nature 293, 566–568 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Oiwa, K. & Takahashi, K. Cell Struct. Funct. 13, 193–205 (1988).

    Article  CAS  Google Scholar 

  27. Hiramoto, Y. in Cilia and Flagella (ed. Sleigh, M. A.) 177–196 (Academic, London, 1974).

    Google Scholar 

  28. Brokaw, C. J. in Molecules and Cell Movement (eds Inoue, S. & Stephens, R. E.) 165–179 (Raven, New York, 1975).

    Google Scholar 

  29. Block, S., Goldstein, L. S. B. & Schnapp, B. J. J. Cell Biol. 109, 81a (1989).

    Google Scholar 

  30. Kishino, A. & Yanagida, T. Nature 334, 74–76 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Oosawa, F. Biorheology 14, 11–19 (1977).

    Article  CAS  Google Scholar 

  32. Schliwa, M. & van Blerkom, J. J. Cell Biol. 90, 222–235 (1981).

    Article  CAS  Google Scholar 

  33. Euteneur, U., Haimo, L. T. & Schliwa, M. Eur. J. Cell Biol. 49, 373–376 (1989).

    Google Scholar 

  34. Koonce, M. P., Euteneuer, V., McDonald, K. L., Menzel, D. & Schiwa, M. Cell Motil. Cytoskel. 6, 521–533 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkin, A., Schütze, K., Dziedzic, J. et al. Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348, 346–348 (1990). https://doi.org/10.1038/348346a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348346a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing