Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct measurement of electrical transport through DNA molecules

Abstract

Attempts to infer DNA electron transfer from fluorescence quenching measurements1,2,3,4,5,6,7,8,9 on DNA strands doped with donor and acceptor molecules have spurred intense debate10,11 over the question of whether or not this important biomolecule is able to conduct electrical charges. More recently, first electrical transport measurements on micrometre-long DNA ‘ropes’12, and also on large numbers of DNA molecules in films13, have indicated that DNA behaves as a good linear conductor. Here we present measurements of electrical transport through individual 10.4-nm-long, double-stranded poly(G)-poly(C) DNA molecules connected to two metal nanoelectrodes, that indicate, by contrast, large-bandgap semiconducting behaviour. We obtain nonlinear current–voltage curves that exhibit a voltage gap at low applied bias. This is observed in air as well as in vacuum down to cryogenic temperatures. The voltage dependence of the differential conductance exhibits a peak structure, which is suggestive of the charge carrier transport being mediated by the molecular energy bands of DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current–voltage curves measured at room temperature on a DNA molecule trapped between two metal nanoelectrodes.
Figure 2: Current–voltage curves that show that transport is indeed measured on DNA trapped between the electrodes.
Figure 3: Differential conductance dI/dV versus applied voltage V at 100 K (a), and various models for the transport (b).
Figure 4: Temperature dependence of the voltage gap in the I–V curves for three different samples.

Similar content being viewed by others

References

  1. Arkin, M. R. et al. Rates of DNA mediated electron transfer between metallointercalators. Science 273, 475–480 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Lewis, F. D. et al. Distance-dependent electron transfer in DNA hairpins. Science 277, 673–676 (1997).

    Article  CAS  Google Scholar 

  3. Barbara, P. F. & Olson, E. J. C. Ch. 13 (Advances in Chemical Physics Vol. 107, Wiley & Sons, 1999).

  4. Meggers, E., Michel-Beyerle, M. E. & Giese, B. Sequence dependent long range hole transport in DNA. J. Am. Chem. Soc. 120, 12950–12955 (1998).

    Article  CAS  Google Scholar 

  5. Beratan, D. N., Priyadarshy, S. & Risser, S. M. DNA: insulator or wire? Chem. Biol. 4, 3–8 (1997).

    Article  CAS  Google Scholar 

  6. Wan, C. et al. Femtosecond dynamics of DNA mediated electron transfer. Proc. Natl Acad. Sci. USA 96, 6014–6019 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Henderson, P. T., Jones, D., Hampikian, G., Kan, Y. & Shuster, B. G. Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism. Proc. Natl Acad. Sci. USA 96, 8353–8358 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Jortner, J., Bixon, M., Langenbacher, T. & Michel-Beyerle, M. E. Charge transfer and transport in DNA. Proc. Natl Acad. Sci. USA 95, 12759–12765 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Grozema, F. C., Berlin, Y. A. & Siebbeles, L. D. A. Sequence dependent charge transfer in donor-DNA-acceptor systems: a theoretical study. Int. J. Quant. Chem. 75, 1009–1016 (1999).

    Article  CAS  Google Scholar 

  10. Taubes, G. Double helix does chemistry at a distance—but how? Science 275, 1420–1421 (1997).

    Article  CAS  Google Scholar 

  11. Wilson, E. K. DNA conductance still confounds. Chem. Eng. News 2751–2754 (1998).

  12. Fink, H. W. & Schönenberger, C. Electrical conduction through DNA molecules. Nature 398, 407–410 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Okahata, Y., Kobayashi, T., Tanaka, K. & Shimomura, M. Anisotropic electric conductivity in an aligned DNA cast film. J. Am. Chem. Soc. 120, 6165–6166 (1998).

    Article  CAS  Google Scholar 

  14. Elley, D. D. & Spivey, D. I. Semiconductivity of organic substances. Trans. Faraday Soc. 58, 411–415 (1962).

    Article  Google Scholar 

  15. Hutter, M. & Clark, T. On the enhanced stability of the guanine-cytosine base-pair radical cation. J. Am. Chem. Soc. 118, 7574–7577 (1996).

    Article  CAS  Google Scholar 

  16. Bezryadin, A. & Dekker, C. Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters. J. Vac. Sci. Technol. B 15, 793–799 (1997).

    Article  CAS  Google Scholar 

  17. Bezryadin, A., Dekker, C. & Schmid, G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 71, 1273–1275 (1997).

    Article  ADS  CAS  Google Scholar 

  18. van Lith, D., Warman, J. M., de Haas, M. P. & Hummel, A. Electron migration in hydrated DNA and collagen at low temperatures. J. Chem. Soc. Faraday Trans. 1 82, 2933–2943 (1986).

    Article  CAS  Google Scholar 

  19. Datta, S. et al. Current-voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Lett. 79, 2530–2533 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Grabert, H. & Devoret, M. H. Single Charge Tunneling (Plenum, New York, 1992).

    Book  Google Scholar 

  21. Bakhshi, A. K. Investigation of electronic conduction in proteins and DNA. Prog. Biophys. Mol. Biol. 61, 187–253 (1994).

    Article  CAS  Google Scholar 

  22. Ladik, J. Energy bands in DNA. Int. J. Quantum Chem. 4, 307–317 (1971).

    Google Scholar 

Download references

Acknowledgements

We thank L. Gurevich for assistance in the fabrication and measurements; E. W. J. M. van der Drift, A. van der Enden, L. E. M. de Groot, S. G. Lemay, A. K. Langen-Suurling, R. N. Schouten, Z. Yao, T. Zijlstra, M. R. Zuiddam, M. P. de Haas, J. M. Warman, A. Storm, N. Kemeling and J. Jortner for assistance and discussions; and E. Kramer and E. Yildirim for the DNA characterization measurements. This work was supported by the Dutch Foundation for Fundamental Research on Matter (FOM).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porath, D., Bezryadin, A., de Vries, S. et al. Direct measurement of electrical transport through DNA molecules. Nature 403, 635–638 (2000). https://doi.org/10.1038/35001029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001029

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing