Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quasi-planar nucleus structure in apoferritin crystallization

Abstract

First-order phase transitions of matter, such as condensation and crystallization, proceed through the formation and subsequent growth of ‘critical nuclei’ of the new phase. The thermodynamics and kinetics of the formation of these critical nuclei depend on their structure, which is often assumed to be a compact, three-dimensional arrangement of the constituent molecules or atoms5,6. Recent molecular dynamics simulations have predicted compact nucleus structures for matter made up of building blocks with a spherical interaction field7,8, whereas strongly anisotropic, dipolar molecules may form nuclei consisting of single chains of molecules9. Here we show, using direct atomic force microscopy observations, that the near-critical-size clusters formed during the crystallization of apoferritin, a quasi-spherical protein, and which are representative of the critical nucleus of this system, consist of planar arrays of one or two monomolecular layers that contain 5–10 rods of up to 7 molecules each. We find that these clusters contain between 20 and 50 molecules each, and that the arrangement of the constituent molecules is identical to that found in apoferritin crystals. We anticipate that similarly unexpected critical nucleus structures may be quite common, particularly with anisotropic molecules, suggesting that advanced nucleation theories should treat the critical nucleus structure as a variable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Near-critical-size cluster on the (111) face of an apoferritin crystal at supersaturation σ = 1.1.
Figure 2: A slowly dissolving cluster at σ = 1.6.
Figure 3: Microcrystal at σ = 1.1.
Figure 4: Schematic illustration of nucleation pathways.

Similar content being viewed by others

References

  1. Gibbs, J. W. The Collected Works of J.W. Gibbs (Yale Univ. Press, New Haven, 1961).

    Google Scholar 

  2. Oxtoby, D. W. Nucleation of first order phase transitions. Acc. Chem. Res. 31, 91–97 (1998).

    Article  CAS  Google Scholar 

  3. Volmer, M. Kinetik der Phasenbildung (Steinkopff, Dresden, 1939 ).

    Google Scholar 

  4. Hill, T. L. Thermodynamics of Small Systems (Benjamin, New York, 1963).

    MATH  Google Scholar 

  5. Milchev, A. Electrochemical phase formation on a foreign substrate - basic theoretical concepts and some experimental results. Contemp. Phys. 32, 321–332 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Chernov, A. A. Modern Crystallography III: Growth of Crystals (Springer, Berlin, 1984).

    Book  Google Scholar 

  7. ten Wolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 ( 1997).

    Article  CAS  Google Scholar 

  8. Talanquer, V. & Oxtoby, D. W. Crystal nucleation in the presence of a metastable critical point. J. Chem. Phys. 109, 223–227 (1998).

    Article  ADS  CAS  Google Scholar 

  9. ten Wolde, P. R., Oxtoby, D. W. & Frenkel, D. Coil-globule transition in gas-liquid nucleation of polar fluids. Phys. Rev. Lett. 81, 3695– 3698 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Harrison, P. M. & Arosio, P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161–203 (1996).

    Article  Google Scholar 

  11. Lawson, D. M. et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349, 541–544 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Hempstead, P. D. et al. Comparison of the three dimensional structures of recombinant human H and horse L ferritins at high resolution. J. Mol. Biol. 268, 424–448 ( 1997).

    Article  CAS  Google Scholar 

  13. Thomas, B. R., Carter, D. & Rosenberger, F. Effects of microheterogeneity on horse spleen apoferritin crystallization. J. Cryst. Growth 187, 499 –510 (1997).

    Article  ADS  Google Scholar 

  14. Yau, S.-T., Thomas, B. R. & Vekilov, P. G. Molecular mechanisms of crystallisation and defect formation. Phys. Rev. Lett. 85, 353– 356 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Kuznetsov, Y. G., Malkin, A. J. & McPherson, A. Atomic force microscpopy studies of phase separations in macromolecular systems. Phys. Rev. B 58, 6097–6103 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Georgalis, Y., Umbach, P., Raptis, J. & Saenger, W. Lysozyme aggregation studied by light scattering. I. Influence of concentration and nature of electrolyte. Acta Crystallogr. D 53, 691– 702 (1997).

    Article  CAS  Google Scholar 

  17. Malkin, A. J., Kuznetsov, Y. G. & McPherson, A. Defect structure of macromolecular crystals. J. Struct. Biol. 117, 124–137 (1996 ); Incorporation of microcrystals by growing protein and virus crystals. Proteins Struct. Funct. Genet. 24, 247– 252 (1996).

    Article  Google Scholar 

  18. Kuznetsov, Y. G., Malkin, A. J. & McPherson, A. AFM studies of the nucleation and growth mechanisms of macromolecular crystals. J. Cryst. Growth 196, 489–502 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Mutaftschiev, B. in Handbook of Crystal Growth (ed. Hurle, D. T. J.) 189– 247 (Elsevier, Amsterdam, 1993).

    Google Scholar 

  20. Kashchiev, D. On the relation between nucleation work, nucleus size, and nucleation rate. J. Chem. Phys. 76, 5098– 5102 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Oxtoby, D. W. & Kashchiev, D. A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation. J. Chem. Phys. 100, 7665– 7671 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Stranski, I. N. & Kaischew, R. Über den Mechanismus des Gleichgewichtes kleiner Kriställchen. I. Z. Phys. Chem. B 26, 100–113 (1934).

    Article  Google Scholar 

  23. Kaischew, R. & Stranski, I. N. Über die Thomson-Gibbs’sche Gleichung bei Kristallen. Z. Phys. Chem. B 35, 427–432 (1937).

    Google Scholar 

  24. Vekilov, P. G., Monaco, L. A., Thomas, B. R., Stojanoff, V. & Rosenberger, F. Repartitioning of NaCl and protein impurities in lysozyme crystallization. Acta Crystallogr. D 52, 785–798 (1996).

    Article  CAS  Google Scholar 

  25. Galkin, O. & Vekilov, P. G. Direct determination of the nucleation rate of protein crystals. J. Phys. Chem. 103, 10965–10971 (1999); Are nucleation kinetics of protein crystals similar to those of liquid droplets? J. Am. Chem. Soc. 122, 156–163 (2000); Control of protein crystal nucleation around the metastable liquid-liquid phase boundary. Proc. Natl Acad. Sci. USA 97, 6277–6281 ( 2000).

    Article  Google Scholar 

  26. Malkin, A. J. & McPherson, A. Light scattering investigation of the nucleation processes and kinetics of crystallization in macromolecular systems. Acta Crystallogr. D 50, 385– 395 (1994).

    Article  CAS  Google Scholar 

  27. Malkin, A. J., Land, T. A., Kuznetsov, Yu. G., McPherson, A. & DeYoreo, J. J. Investigation of virus crystal growth mechanism by in situ atomic force microscopy. Phys. Rev. Lett. 75, 2778–2781 ( 1995).

    Article  ADS  CAS  Google Scholar 

  28. Petsev, D. N. & Vekilov, P. G. Evidence for non-DLVO hydration interactions in solutions of the protein apoferritin. Phys. Rev. Lett. 84, 1339–1342 ( 2000).

    Article  ADS  CAS  Google Scholar 

  29. Petsev, D. N., Thomas, B. R., Yau, S.-T. & Vekilov, P. G. Interactions and aggregation of apoferritin molecules in solution: effects of added electrolytes. Biophys. J. 78, 2060 –2069 (2000).

    Article  CAS  Google Scholar 

  30. Atkins, P. Physical Chemistry (Freeman, New York, 1998).

    Google Scholar 

  31. Lin, H., Rosenberger, F., Alexander, J. I. D. & Nadarajah, A. Convective-diffusive transport in protein crystal growth. J. Cryst. Growth 151, 153–162 ( 1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. W. Oxtoby, D. N. Petsev, J. I. D. Alexander, O. Galkin, S. Weinkauf, J. M. Garcia-Ruiz and N. Booth for suggestions and encouragement; B. R. Thomas for providing pure apoferritin; H. Lin and D. N. Petsev for numerical simulations; and L. Carver for graphics work. This research was supported by the National Heart, Lung, and Blood Institute, NIH, the Life and Microgravity Sciences and Applications Division of NASA, and the State of Alabama through the Centre for Microgravity and Materials Research at the University of Alabama in Huntsville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Vekilov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yau, ST., Vekilov, P. Quasi-planar nucleus structure in apoferritin crystallization. Nature 406, 494–497 (2000). https://doi.org/10.1038/35020035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020035

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing