Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH

Abstract

Ocean pH is particularly sensitive to atmospheric carbon dioxide content1,2,3. Records of ocean pH can therefore be used to estimate past atmospheric carbon dioxide concentrations. The isotopic composition of boron (δ11B) contained in the carbonate shells of marine organisms varies according to pH, from which ocean pH can be reconstructed4,5,6,7,8,9,10,11. This requires independent estimates of the δ11B of dissolved boron in sea water through time. The marine δ11B budget, however, is still largely unconstrained. Here we show that, by incorporating the global flux of riverine boron (as estimated from δ11B measurements in 22 of the world's main rivers), the marine boron isotope budget can be balanced. We also derive ocean δ11B budgets for the past 120 Myr. Estimated isotope compositions of boron in sea water show a remarkable consistency with records of δ11B in foraminiferal carbonates9,10,11, suggesting that foraminifera δ11B records may in part reflect changes in the marine boron isotope budget rather than changes in ocean pH over the Cenozoic era.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Estimation of the changes over the past 140 Myr of the main processes controlling the boron budget in the ocean.
Figure 2: Models of the secular evolution of boron in the ocean.

Similar content being viewed by others

References

  1. Berner, R. A. The rise of plants and their effect on weathering and atmospheric CO2. Science 276, 544–546 (1997).

    Article  CAS  Google Scholar 

  2. Goddéris, Y. & François, L. M. Balancing the Cenozoic carbon and alkalinity cycles: Constraints from isotopic records. Geophys. Res. Lett. 23, 3743–3746 (1996).

    Article  ADS  Google Scholar 

  3. McCauley, S. E. & DePaolo, D. J. Tectonic Uplift and Climate Change (Plenum, New York, 1997).

    Google Scholar 

  4. Vengosh, A., Kolodny, Y., Starinsky, A., Chivas, A. R. & McCulloch, M. T. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim. Cosmochim. Acta. 55, 2901–2910 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Hemming, N. G. & Hanson, G. N. Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta. 56, 537–543 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Spivack, A. J., You, C. F. & Smith, J. Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr. Nature 363, 149–151 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Gaillardet, J. & Allègre, C. J. Boron isotopic compositions of corals : seawater or diagenesis record? Earth Planet. Sci. Lett. 136, 665–676 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Sanyal, A., Hemming, N. G., Hanson, G. N. & Broecker, W. S. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373, 234–236 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Palmer, M. R., Pearson, P. N. & Cobb, S. J. Reconstructing past ocean pH-depth profiles. Science 282, 1468–1471 (1998).

    Article  CAS  Google Scholar 

  10. Pearson, P. N. & Palmer, M. R. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science 284, 1824–1826 (1999).

    Article  CAS  Google Scholar 

  11. Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Spivack, A. J. & Edmond, J. M. Boron isotope exchange between seawater and the oceanic crust. Geochim. Cosmochim. Acta 51, 1033–1043 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Smith, H. J., Spivack, A. J., Staudigel, H. & Hart, S. R. The boron isotopic composition of altered oceanic crust. Chem. Geol. 126, 119–135 (1995).

    Article  ADS  Google Scholar 

  14. Schwarcz, H. P., Agyei, E. K. & McMullen, C. C. Boron isotopic fractionation during clay adsorption from sea-water. Earth Planet. Sci. Lett. 6, 1–5 (1969).

    Article  ADS  CAS  Google Scholar 

  15. Spivack, A. J., Palmer, M. R. & Edmond, J. M. The sedimentary cycle of the boron isotopes. Geochim. Cosmochim. Acta 51, 1939–1949 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Spivack, A. J. Boron Isotope Geochemistry. Thesis, Massachussetts Institute of Technology/Woods Hole Oceanographic Institute (1986).

    Google Scholar 

  17. Rose, E. F., Chaussidon, M. & France-Lanord, C. Fractionation of boron isotopes during erosion processes: the example of Himalayan rivers. Geochim. Cosmochim. Acta 64, 397–408 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Lemarchand, D., Gaillardet, J., Göpel, C. & Manhès, G. An optimized procedure for boron separation and mass spectrometry for river water samples. Chem. Geol. (submitted).

  19. Harriss, R. C. Boron regulation in the oceans. Nature 223, 290–291 (1969).

    Article  ADS  CAS  Google Scholar 

  20. Vengosh, A., Spivack, A. J., Artzi, Y. & Ayalon, A. Geochemical and boron, strontium, and oxygen isotopic constrains on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Wat. Resour. Res. 35, 1877–1894 (1998).

    Article  ADS  Google Scholar 

  21. Reimann, C. & Caritat, P. Chemical Elements in the Environment (Springer, Berlin, 1998).

    Book  Google Scholar 

  22. Larson, R. L. The Mid-Cretaceous superplume episode. Sci. Am. 272, 66–70 (1995).

    Article  Google Scholar 

  23. Goddéris, Y. Modelisation de l’Évolution Cénozoı¨que des Cycles Biogéochimiques : Impact de l’Orogénèse Himalayenne. Thesis, Univ. Liège (1997).

    Google Scholar 

  24. Opdyke, B. N. & Wilkinson, B. H. Surface area control of shallow cratonic to deep marine carbonate accumulation. Paleoceanography 3, 685–703 (1988).

    Article  ADS  Google Scholar 

  25. Gibbs, M. T., Bluth, G. J. S., Fawcett, P. J. & Kump, L. R. Global chemical erosion over the last 250 My: variations due to changes in paleogeography, paleoclimate, and paleogeology. Am. J. Sci. 299, 611–651 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Berner, R. A. GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294, 56–91 (1994).

    Article  ADS  CAS  Google Scholar 

  27. You, C. F., Spivack, A. J., Smith, J. H. & Gieskes, J. M. Mobilization of boron in convergent margins: implications for the boron geochemical cycle. Geology 21, 207–210 (1993).

    Article  ADS  CAS  Google Scholar 

  28. You, C. F., Spivack, A. J., Gieskes, J. M., Rosenbauer, R. & Bishoff, J. L. Experimental study of boron geochemistry : Implications for fluid processes in subduction zones. Geochim. Cosmochim. Acta 59, 2435–2442 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. A. Berner, G. N. Hemming, A. J. Spivack, E. Young and B. Bourdon for comments on the manuscript. We also thank the following for sampling facilities: T. Allard, M. Benedetti, M. Blasco, F. Bodet, G. J. Chakrapani, B. Dupré, C. Gariépi, W. Li, P. Negrel, V. Rachold, V. Subramanian and J. Zhao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lemarchand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemarchand, D., Gaillardet, J., Lewin, É. et al. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408, 951–954 (2000). https://doi.org/10.1038/35050058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050058

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing