Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prediction of absolute crystal-nucleation rate in hard-sphere colloids

Abstract

Crystal nucleation is a much-studied phenomenon, yet the rate at which it occurs remains difficult to predict. Small crystal nuclei form spontaneously in supersaturated solutions, but unless their size exceeds a critical value—the so-called critical nucleus—they will re-dissolve rather than grow. It is this rate-limiting step that has proved difficult to probe experimentally. The crystal nucleation rate depends on Pcrit, the (very small) probability that a critical nucleus forms spontaneously, and on a kinetic factor (κ) that measures the rate at which critical nuclei subsequently grow. Given the absence of a priori knowledge of either quantity, classical nucleation theory1 is commonly used to analyse crystal nucleation experiments, with the unconstrained parameters adjusted to fit the observations. This approach yields no ‘first principles’ prediction of absolute nucleation rates. Here we approach the problem from a different angle, simulating the nucleation process in a suspension of hard colloidal spheres, to obtain quantitative numerical predictions of the crystal nucleation rate. We find large discrepancies between the computed nucleation rates and those deduced from experiments2,3,4: the best experimental estimates of Pcrit seem to be too large by several orders of magnitude.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The calculated free-energy barrier for homogeneous crystal nucleation of hard-sphere colloids.
Figure 2: Reduced nucleation rates I as a function of the volume fraction of the meta-stable liquid.
Figure 3: Snapshot of a cross-section of a critical nucleus of a hard-sphere crystal at a liquid volume fraction φ = 0.5207.
Figure 4: Structure analysis of (pre) critical crystal nuclei.

Similar content being viewed by others

References

  1. Kelton, K. F. Solid State Physics Vol. 45, 75–90 (Academic, New York, 1991).

    Google Scholar 

  2. Schätzel, K. & Ackerson, B. J. Density fluctuations during crystallization of colloids. Phys. Rev. E 48, 3766–3777 (1993).

    Article  ADS  Google Scholar 

  3. Harland, J. L. & Van Megen, W. Crystallization kinetics of suspensions of hard colloidal spheres. Phys. Rev. E 55, 3054–3067 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Cheng, Z. Colloidal Hard Sphere Crystallization and Glass Transition. Thesis, Princeton Univ. (1998).

    Google Scholar 

  5. Zhu, J. et al. Crystallization of hard-sphere colloids under microgravity. Nature 387, 883–885 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Van Duijneveldt, J. S. & Lekkerkerker, H. N. W. in Science and Technology of Crystal Growth (eds van der Eerden, J. P. & Bruinsma, O. S. L.) 279–290 (Kluwer Academic, Dordrecht, 1995).

    Book  Google Scholar 

  7. Van Duijneveldt, J. S. & Frenkel, D. Computer simulation study of free energy barriers in crystal nucleation. J. Chem. Phys. 96, 4655–4668 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical evidence for b.c.c. or ordering at the surface of a critical f.c.c. nucleus. Phys. Rev. Lett. 75, 2714–2717 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Hoover, W. G. & Ree, F. H. Melting transition and communal entropy for hard spheres. J. Chem. Phys. 49, 3609–3617 (1968).

    Article  ADS  CAS  Google Scholar 

  10. Hall, K. R. Another hard-sphere equation of state. J. Chem. Phys. 57, 2252–2254 (1970).

    Article  ADS  Google Scholar 

  11. Davidchack, R. L. & Laird, B. B. Direct calculation of the hard-sphere crystal/melt interfacial free energy. Phys. Rev. Lett. 85, 4751–4754 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Hinsen, K. & Cichocki, B. Dynamic computer simulation of concentrated hard-sphere suspensions. Physica A 166, 473–491 (1990).

    Article  ADS  Google Scholar 

  13. Medina-Noyola, M. Long-time self-diffusion in concentrated colloidal dispersions. Phys. Rev. Lett. 60, 2705–2708 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 22, 289–330 (1897).

    CAS  Google Scholar 

  15. Alexander, S. & McTague, J. P. Should all crystals be BCC? Phys. Rev. Lett. 41, 702–705 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Klein, W. & Leyvraz, F. Crystalline nucleation in deeply quenched liquids. Phys. Rev. Lett. 57, 2845–2848 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Groh, B. & Mulder, B. M. Why all crystals need not be b.c.c.: symmetry breaking at the liquid–solid transition revisited. Phys. Rev. E 59, 5613–5620 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Bolhuis, P. G., Frenkel, D., Mau, S. C. & Huse, D. A. Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures. Nature 388, 235–237 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Pusey, P. N. et al. Structure of crystals of hard colloidal spheres. Phys. Rev. Lett. 63, 2753–2756 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Pronk, S. & Frenkel, D. Can stacking faults in hard-sphere crystals anneal out spontaneously? J. Chem. Phys. 110, 4589–4592 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Mau, S. C. & Huse, D. A. Stacking entropy of hard-sphere crystals. Phys. Rev. E 59, 4396–4401 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Torrie, G. M. & Valleau, J. P. Monte-Carlo free energy estimates using non-Boltzmann sampling: application to the subcritical Lennard-Jones fluid. Chem. Phys. Lett. 28, 578–581 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Geyer, C. J. & Thompson, E. A. Annealing Markov-chain Monte Carlo with applications to ancestral inference. J. Am. Stat. Assoc. 90, 909–920 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Lekkerkerker, W. van Megen, W. Kegel, A. van Blaaderen, J. Horbach and B. Smit for a critical reading of the manuscript. This work was supported by the Division of Chemical Sciences (CW) of the Netherlands organization for Scientific Research (NWO). The work of the FOM Institute is part of the research programme of FOM, and is made possible by financial support from the NWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan Frenkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auer, S., Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001). https://doi.org/10.1038/35059035

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35059035

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing