Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Life in extreme environments

Abstract

Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring 'extremophiles'. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Congress Pool, Norris Geyser Basin, Yellowstone National Park, USA, where Tom Brock originally isolated Sulfalobus acidocaldarius.
Figure 2: Octopus Spring, an alkaline (pH 8.8–8.3) hotspring in Yellowstone National Park, USA, is situated several miles north of Old Faithful geyser.
Figure 3: Temperature limits for life.
Figure 4: pH limits for life.
Figure 5: Cyanidium caldarium, Norris Geyser Basin, Yellowstone National Park, USA.
Figure 6: The BioPan halophile experiment.
Figure 7

Similar content being viewed by others

References

  1. Macelroy, R. D. Some comments on the evolution of extremophiles. Biosystems 6, 74–75 (1974).

    Google Scholar 

  2. Madigan, M. T. & Marrs, B. L. Extremophiles. Sci. Am. 276, 82–87 (1997).

    CAS  PubMed  Google Scholar 

  3. Horikoshi, K. & Grant, W. D. Extremophiles. Microbial Life in Extreme Environments (Wiley-Liss, New York, 1998).

    Google Scholar 

  4. Seckbach, J. (ed.) Journey to Diverse Microbial Worlds: Adaptation to Exotic Environments (Kluwer, Dordrecht, 2000).

    Google Scholar 

  5. Cowan, D. Hot bugs, cold bugs and sushi. Trends Biotechnol. 16, 241–242 (1998).

    CAS  Google Scholar 

  6. Aguilar, A., Ingemansson, T. & Magnien, E. Extremophile microorganisms as cell factories: support from the European Union. Extremophiles 2, 367–373 (1998).

    CAS  PubMed  Google Scholar 

  7. Tyrell, R. M. in Oxidative Stress: Oxidants and Antioxidants (ed. Sies, H.) 57–83 (Academic, London, 1991).

    Google Scholar 

  8. Newcomb, T. G. & Loeb, L. A. in DNA Damage and Repair, Vol. 1: DNA Repair in Prokaryotes and Lower Eukaryotes (eds Nickoloff, J. A. & Hoekstra, M. F.) 65–84 (Humana, Totowa, NJ, 1998).

    Google Scholar 

  9. Minton, K. W. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol. 13, 9–15 (1994).

    CAS  PubMed  Google Scholar 

  10. Chow, F. I. & Tan, S. T. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J. Bacteriol. 172, 2029–2035 (1990).

    Google Scholar 

  11. Venkateswaran, A. et al. Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl. Environ. Microbiol. 66, 2620–2626 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Seki, K. & Toyoshima, M. Preserving tardigrades under pressure. Nature 395, 853–854 (1998).

    ADS  CAS  Google Scholar 

  13. Ball, P. H2O. A Biography of Water (Weldenfeld & Nicolson, London, 1999).

    Google Scholar 

  14. Morita, R. Y. Psychrophilic bacteria. Bacteriol. Rev. 39, 144–167 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Blochl, E. et al. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1, 14–21 (1997).

    CAS  PubMed  Google Scholar 

  16. Schuliger, J. W., Brown, S. H., Baross, J. A. & Kelly, R. M. Purification and characterization of a novel amylolytic enzyme from ES4, a marine hyperthermophilic archaeum. Mol. Mar. Biol. Biotech. 2, 76–87 (1993).

    CAS  Google Scholar 

  17. Clarke, A. in Evolution on Planet Earth: The Impact of the Physical Environment (eds Rothschild, L. & Lister, A.) (Academic, London, in the press).

  18. Kohshima, S. A novel cold-tolerant insect found in a Himalayan glacier. Nature 310, 225 (1984).

  19. Franks, F. Biophysics and Biochemistry at Low Temperatures (Cambridge Univ. Press, Cambridge, 1985).

    Google Scholar 

  20. Wharton, D. A. & Ferns, D. J. Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi. J. Exp. Biol. 198, 1381–1387 (1995).

    CAS  PubMed  Google Scholar 

  21. Battista, J. R. Against all odds: the survival strategies of Deinococcus radiodurans. Annu. Rev. Microbiol. 51, 203–224 (1997).

    CAS  PubMed  Google Scholar 

  22. Ferreira, A. C. et al. Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3, 235–238 (1999).

    CAS  PubMed  Google Scholar 

  23. Ben-Amotz, A. & Avron, M. Dunaliella bardawil can survive especially high irradiance levels by the accumulation of β-carotene. Trends Biotechnol. 8, 121–126 (1990).

    CAS  Google Scholar 

  24. Pledger, R. J., Crump, B. C. & Baross, J. A. A barophilic response by two hyperthermophilic, hydrothermal vent Archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure. FEMS Microbiol. Ecol. 14, 233–242 (1994).

    Google Scholar 

  25. Bartlett, D. H. & Bidle, K. A. in Enigmatic Microorganisms and Life in Extreme Environments (ed. Seckbach, J.) 503–512 (Kluwer, Dordrecht, 1999).

    Google Scholar 

  26. Van Dover, C. L. The Ecology of Deep-Sea Hydrothermal Vents (Princeton Univ. Press, Princeton, 2000).

    Google Scholar 

  27. Kato, C. et al. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. 64, 1510–1513 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cogoli, A., Iversen, T. H., Johnsson, A., Mesland, D. & Oser, H. European Space Agency Spec. Publ. No. 1105, 49–64 (1989)

    Google Scholar 

  29. Crowe, J. H. Anhydrobiosis: an unsolved problem. Am. Nat. 105, 563–574 (1971).

    Google Scholar 

  30. Wright, J. C. Desiccation tolerance and water-retentive mechanisms in tardigrades. J. Exp. Biol. 142, 267–292 (1989).

    Google Scholar 

  31. Glasheen, J. S. & Hand, S. C. Anhydrobiosis in embryos of the brine shrimp Artemia: characterization of metabolic arrest during reductions in cell-associated water. J. Exp. Biol. 135, 363–389 (1988).

    CAS  Google Scholar 

  32. Potts, M. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58, 755–805 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cox, C. S. Roles of water molecules in bacteria and viruses. Origins Life 23, 29–36 (1993).

    CAS  Google Scholar 

  34. Dose, K. et al. ERA-experiment: space biochemistry. Adv. Space Res. 16(8), 119–129 (1995).

    ADS  Google Scholar 

  35. Dose, K. & Gill, M. DNA stability and survival of Bacillus subtilis spores in extreme dryness. Origins Life 25, 277–293 (1994).

    Google Scholar 

  36. Seckbach, J. in Enigmatic Microorganisms and Life in Extreme Environments (ed. Seckbach, J.) 427–435 (Kluwer, Dordrecht, 1999).

    Google Scholar 

  37. Doemel, W. N. & Brock, T. D. The physiological ecology of Cyanidium caldarium. J. Gen. Microbiol. 67, 17–32 (1971).

    Google Scholar 

  38. Pick, U. in Enigmatic Microorganisms and Life in Extreme Environments (ed. Seckbach, J.) 467–478 (Kluwer, Dordrecht, 1999).

    Google Scholar 

  39. Schleper, C., Pühler, G., Kühlmorgen, B. & Zillig, W. Life at extremely low pH. Nature 375, 741–742 (1995).

    ADS  CAS  PubMed  Google Scholar 

  40. Schleper C. et al. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol. 177, 7050–7059 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Edwards, K. J., Bond, P. L., Gihring, T. M. & Banfield, J. F. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287, 1796–1799 (2000).

    ADS  CAS  PubMed  Google Scholar 

  42. Krulwich, T. A., Ito, M., Hicks, D. B., Gilmour, R. & Guffanti, A. A. pH homeostasis and ATP synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species. Extremophiles 2, 217–222 (1998).

    CAS  PubMed  Google Scholar 

  43. Javor, B. Hypersaline Environments (Springer, Berlin, 1989).

    Google Scholar 

  44. Jones, B. E., Grant, W. D., Duckworth, A. W. & Owenson, G. G. Microbial diversity of soda lakes. Extremophiles 2, 191–200 (1998).

    CAS  PubMed  Google Scholar 

  45. Beckman, K. B. & Ames, B. N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).

    CAS  PubMed  Google Scholar 

  46. Pourzand, C. & Tyrrell, R. M. Apoptosis, the role of oxidative stress and the example of solar UV radiation. Photochem. Photobiol. 70, 380–390 (1999).

    CAS  PubMed  Google Scholar 

  47. Cooper, W. & Lean, D. in Encyclopedia of Earth System Science Vol. 2 (ed. Nierenber, W. A.) 527–535 (Academic, San Diego, 1992).

    Google Scholar 

  48. Seckbach, J., Baker, F. A. & Shugarman, P. M. Algae survive under pure CO2 . Nature 227, 744–745 (1970).

    ADS  CAS  PubMed  Google Scholar 

  49. Nies, D. H. Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4, 77–82 (2000).

    CAS  PubMed  Google Scholar 

  50. Isken, S. & de Bont, J. A. M. Bacteria tolerant to organic solvents. Extremophiles 2, 229–238 (1998).

    CAS  PubMed  Google Scholar 

  51. Beardall, J. & Entwisle, L. Internal pH of the obligate acidophile Cyanidium caldarium Geitler (Rhodophyta?). Phycologia 23, 397–399 (1984).

    Google Scholar 

  52. Jaenicke, R. Stability and folding of ultrastable proteins: eye lens crystallins and enzymes from thermophiles. FASEB J. 10, 84–92 (1996).

    CAS  PubMed  Google Scholar 

  53. Peak, M. J., Robb, F. T. & Peak, J. G. Extreme resistance to thermally induced DNA backbone breaks in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 177, 6316–6318 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Marguet, E. & Forterre, P. Protection of DNA by salts against thermodegradation at temperatures typical for hyperthermophiles. Extremophiles 2, 115–122 (1998).

    CAS  PubMed  Google Scholar 

  55. Galtier, N., Tourasse, N. & Gouy, M. A nonhyperthermophilic common ancestor to extant life forms. Science 283, 220–221 (1999).

    CAS  PubMed  Google Scholar 

  56. Galtier, N. & Lobry, J. R. Relationships between genomic G+C content, secondary structures and optimal growth temperature in prokaryotes. J. Mol. Evol. 44, 632 (1997).

  57. Storey, K. B. & Storey, J. M. Natural freezing survival in animals. Annu. Rev. Ecol. Syst. 27, 365–386 (1996).

    Google Scholar 

  58. Russell, N. J. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4, 83–90 (2000).

    CAS  PubMed  Google Scholar 

  59. Cummings, S. P. & Black, G.W. Polymer hydrolysis in a cold climate. Extremophiles 3, 81–87 (1999).

    CAS  PubMed  Google Scholar 

  60. Aghajari, N., Feller, G., Gerday, C. & Haser, R. Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6, 1503–1516 (1998).

    CAS  PubMed  Google Scholar 

  61. Willem, S. et al. Protein adaptation to low temperatures: a comparative study of α-tubulin sequences in mesophilic and psychrophilic algae. Extremophiles 3, 221–226 (1999).

    CAS  PubMed  Google Scholar 

  62. Rothschild, L. J. in Enigmatic Microorganisms and Life in Extreme Environments (ed. Seckbach, J.) 551–562 (Kluwer, Dordrecht, 1999).

    Google Scholar 

  63. Battista, J. R. in DNA Damage and Repair, Vol. I: DNA Repair in Prokaryotes and Lower Eukaryotes (eds Nickoloff, J. A. & Hoekstra, M. F.) 287–303 (Humana, Totowa, NJ, 1998).

    Google Scholar 

  64. Nakasone, K., Ikegami, A., Kato, C., Usami, R. & Horikoshi, K. Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2, 149–154 (1998).

    CAS  PubMed  Google Scholar 

  65. Abe, F., Kato, C. & Horikoshi, K. Pressure-regulated metabolism in microorganisms. Trends Microbiol. 7, 447–453 (1999).

    CAS  PubMed  Google Scholar 

  66. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. Living with water stress: evolution of osmolyte systems. Science 217, 1214–1216 (1982).

    ADS  CAS  PubMed  Google Scholar 

  67. Larsen, H. Biochemical aspects of extreme halophilism. Adv. Microb. Physiol. 1, 97–132 (1967).

    CAS  Google Scholar 

  68. Le Rudulier, D. & Bouillard, L. Glycine Betaine, an osmotic effector in Klebsiella pneumonia and other members of the Enterobacteriaceae. Appl. Environ. Microbiol. 46, 152–159 (1983).

    PubMed  PubMed Central  Google Scholar 

  69. Crowe, J. H., Hoekstra, F. A. & Crowe, L. M. Anhydrobiosis. Annu Rev. Physiol. 54, 579–599 (1992).

    CAS  PubMed  Google Scholar 

  70. Wehner, J. & Horneck, G. Effects of vacuum UV and UVC radiation on dry E. coli plasmid pUC19 II. Mutational specificity at the lacZ gene. J. Photochem. Photobiol. B 30, 171–177 (1995).

    CAS  PubMed  Google Scholar 

  71. Wehner, J. & Horneck, G. Effects of vacuum UV and UVC radiation on dry E. coli plasmid pUC19 I. Inactivation, lacZ mutation induction and strand breaks. J. Photochem. Photobiol. B 28, 77–85 (1995).

    CAS  PubMed  Google Scholar 

  72. Brock, T. D. Thermophilic Microorganisms and Life at High Temperatures (Springer, New York, 1978).

    Google Scholar 

  73. Reysenbach, A. L., Voytek, M. & Mancinelli, R. L. (eds) Microbiology of Yellowstone (Kluwer, New York, in the press).

  74. Horikoshi, K. Barophiles: deep-sea microorganisms adapted to an extreme environment. Curr. Opin. Microbiol. 1, 291–295 (1998).

    CAS  PubMed  Google Scholar 

  75. Kennish, M. J. (ed.) Practical Handbook of Marine Science 2nd edn 236–237 (CRC Press, Boca Raton, 1994).

    Google Scholar 

  76. Karl, D. M. (ed.) The Microbiology of Deep-sea Hydrothermal Vents (CRC Press, Boca Raton, 1995).

    Google Scholar 

  77. Cody, G. D. et al. Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289, 1337–1340 (2000).

    ADS  CAS  PubMed  Google Scholar 

  78. Pace, N. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    CAS  PubMed  Google Scholar 

  79. Sleep, N. H., Zahnle, K. J., Kasting, J. F. & Morowitz, H. J. Annihilation of ecosystems by large impacts on early earth. Nature 342, 139–142 (1989).

    ADS  CAS  PubMed  Google Scholar 

  80. Oren, A. in Enigmatic Microorganisms and Life in Extreme Environments (ed. Seckbach, J.) 339–355 (Kluwer, Dordrecht, 1999).

    Google Scholar 

  81. Kamekura, M. Diversity of extremely halophilic bacteria. Extremophiles 2, 289–295 (1998).

    CAS  PubMed  Google Scholar 

  82. Bell, C. M. Saline lake carbonates within an Upper Jurassic-Lower Cretaceous continental red bed sequence in the Atacama region of northern Chile. Sedimentology 36, 651–664 (1989).

    ADS  Google Scholar 

  83. Castanier, S., Perthuisot, J.-P., Rouchy, J.-M., Maurin, A. & Guelorget. O. Halite ooids in Lake Asal Djibouti biocrystalline build-ups. Geobios (Lyon) 25, 811–821 (1992).

    Google Scholar 

  84. Norton, C. F. & Grant, W. D. Survival of halobacteria within fluid inclusions in salt crystals. J. Gen. Microbiol. 134, 1365–1373 (1988).

    Google Scholar 

  85. Rothschild, L. J., Giver, L. J., White, M. R. & Mancinelli, R. L. Metabolic activity of microorganisms in gypsum-halite crusts. J. Phycol. 30, 431–438 (1994).

    CAS  PubMed  Google Scholar 

  86. Vreeland, R. H., Rosenzweig, W. D. & Powers, D. W. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897–900 (2000).

    ADS  CAS  PubMed  Google Scholar 

  87. Evans, R. D. & Johansen, J. R. Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18, 182–225 (1999).

    Google Scholar 

  88. Rundel, P. W. et al. The phytogeography and ecology of the coastal Atacama and Peruvian deserts. ALISO 13, 1–49 (1991).

    Google Scholar 

  89. van Thielen, N. & Garbary, D. J. in Enigmatic Microorganisms and Life in Extreme Environments (ed. Seckbach, J.) 245–253 (Kluwer, Dordrecht, 1999).

    Google Scholar 

  90. Friedmann, E. I. Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–1053 (1982).

    ADS  CAS  PubMed  Google Scholar 

  91. Bidigare, R. R. et al. Evidence for a photoprotective function for secondary carotenoids of snow algae. J. Phycol. 29, 427–434 (1993).

    CAS  Google Scholar 

  92. Junge, K., Krembs, C., Deming, J., Stierle, A. & Eicken, H. A microscopic approach to investigate bacteria under in-situ conditions in sea-ice samples. Ann. Glaciol. (in the press).

  93. Friedmann, E. I. Viable Microorganisms in Permafrost (ed. Gilichinsky, D. A.) 21–26 (Institute of Soil Science and Photosynthesis, Russian Academy of Science, Pushchino, 1994); cited in Vishnivetskaya, T., Kathariou, S., McGrath, J., Gilichinsky, D. & Tiedje, J. M. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4, 165–173 (2000).

    Google Scholar 

  94. Staley, J. T. & Gosink, J. J. Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53, 189–215 (1999).

    CAS  PubMed  Google Scholar 

  95. Mancinelli, R. L. & Shulls, W. A. Airborne bacteria in an urban environment. Appl. Environ. Microbiol. 35, 1095–1101 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Cox, C. S. Roles of Maillard Reactions in Diseases (HMSO, London, 1991).

    Google Scholar 

  97. Israeli, E., Gitelman, J. & Lighthart, B. in Atmospheric Microbial Aerosol Theory and Application (eds Lighthart, B. & Mohr, A. J.) 166–192 (Chapman & Hall, New York, 1994).

    Google Scholar 

  98. Cox, C. S. The Aerobiological Pathway of Microorganisms (Wiley, New York, 1987).

    Google Scholar 

  99. Cox, C. S. & Wathes, C. M. Bioaerosols Handbook (Lewis, London, 1995).

    Google Scholar 

  100. Lighthart, B. & Mohr, A. J. (eds) Atmospheric Microbial Aerosol Theory and Application 68–98, 166–192 (Chapman & Hall, New York, 1994).

    Google Scholar 

  101. Marchant, J. Life from the skies—did droplets high in the atmosphere give birth to the first living cells? New Sci. 2247, 4–5 (15 July 2000).

  102. Dundas, I. Was the environment for primordial life hypersaline? Extremophiles 2, 375–377 (1998).

    CAS  PubMed  Google Scholar 

  103. Biemann, K. et al. The search for organic substances and inorganic volatile compounds in the surface of Mars. J. Geophys. Res. 82, 4641–4658 (1977).

    ADS  CAS  Google Scholar 

  104. Malin, M. C. & Edgett, K. S. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000).

    ADS  CAS  PubMed  Google Scholar 

  105. Horneck, G. in Evolution on Planet Earth: The Impact of the Physical Environment (eds Rothschild, L. & Lister, A.) (Academic, London, in the press).

  106. Rothschild, L. J. Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Icarus 88, 246–260 (1990).

    ADS  CAS  PubMed  Google Scholar 

  107. Mancinelli, R. L. & Klovstad, M. Survival of Bacillus subtilis spores on space craft surfaces. Planet. Space Sci. 48, 1093–1097 (2000).

    ADS  Google Scholar 

  108. Chyba, C. Energy for microbial life on Europa. Nature 403, 381–382 (2000).

    ADS  CAS  PubMed  Google Scholar 

  109. Stone, R. Permafrost comes alive for Siberian researchers. Science 286, 36–37 (1999).

    PubMed  Google Scholar 

  110. Richter, H. Zur Darwinschen Lehre. Schmidts Jahrb. Ges. Med. 126, 243–249 (1865).

    Google Scholar 

  111. Thomson, W. in Popular Lectures and Addresses 132–205 (Macmillan, New York, 1894).

    Google Scholar 

  112. Arrhenius, S. Die Verbreitung des Lebens im Weltenraum. Umschau 7, 481–485 (1903).

    Google Scholar 

  113. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. & Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol Rev. 64, 548–572 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rothschild, L. J. in Evolution on Planet Earth: The Impact of the Physical Environment (eds Rothschild, L. & Lister, A.) (Academic, London, in the press).

  115. Horneck, G., Krasavin, E. A. & Kozubek, S. Mutagenic effects of heavy ions in bacteria. Adv. Space Res. 14(10), 315–329 (1994).

    Google Scholar 

  116. Cheng, C-H. C. & Chen, L. Evolution of an antifreeze glycoprotein. Nature 401, 463–464 (1999).

    ADS  Google Scholar 

  117. Ito, S. et al. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2, 185–190 (1998).

    CAS  PubMed  Google Scholar 

  118. Zeikus, J. G., Vielle, C. & Savchenko, A. Thermozymes: biotechnology and structure-function relationships. Extremophiles 2, 179–182 (1998).

    CAS  PubMed  Google Scholar 

  119. Hough, D. W. & Danson, M. J. Extremozymes. Curr. Opin. Chem. Biol. 3, 39–46 (1999).

    CAS  PubMed  Google Scholar 

  120. Sellek, G. A. & Chaudhuri, J. B. Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb. Technol. 25, 471–482 (1999).

    CAS  Google Scholar 

  121. Brock, T. D. & Freeze, H. Thermus aquaticus gen. n., a nonsporulating extreme thermophile. J. Bacteriol. 98, 289–297 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mattila, P., Korpela, J., Tenkanen, T. & Pitkänen, K. Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase—an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res. 19, 4967–4973 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Cariello, N. F., Swenberg, J. A. & Skopek, T. R. Fidelity of Thermococcus litoralis DNA polymerase (Vent) in PCR determined by denaturing gradient gel electrophoresis. Nucleic Acids Res. 19, 4193–4198 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nichols, D. et al. Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr. Opin. Biotechnol. 10, 240–246 (1999).

    CAS  PubMed  Google Scholar 

  125. Ben-Amotz, A. in Enigmatic Microorganisms and Life in Extreme Environments (ed. Seckbach, J.) 401–410 (Kluwer, Dordrecht. 1999).

    Google Scholar 

Download references

Acknowledgements

We thank the many people who were generous with information, especially: J. Baross on hydrothermal vents; L. Giver and C. Wong on commercial aspects; G. Antranikian and M. Meyer on government programmes; J. Deming, K. Junge, P. Ball, S. Emerson and G. Packard on life at low temperatures; and K. Stedman for life at high temperatures. A. Deutch, K. Duffy and S. Sturtevant provided tips on the thermophiles of Yellowstone. E. Holton, D. Cowan and J. Parkes provided helpful reviews.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lynn J. Rothschild or Rocco L. Mancinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothschild, L., Mancinelli, R. Life in extreme environments. Nature 409, 1092–1101 (2001). https://doi.org/10.1038/35059215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35059215

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing