Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of orbital waves as elementary excitations in a solid

Abstract

A basic concept in solid-state physics is that when some kind of symmetry in a solid is spontaneously broken, collective excitations will arise1. For example, phonons are the collective excitations corresponding to lattice vibrations in a crystal, and magnons correspond to spin waves in a magnetically ordered compound. Modulations in the relative shape of the electronic clouds in an orbitally ordered state2,3,4,5,6,7,8,9 could in principle give rise to orbital waves, or ‘orbitons’, but this type of elementary excitation has yet to be observed experimentally. Systems in which the electrons are strongly correlated—such as high-temperature superconductors and manganites exhibiting colossal magnetoresistivity—are promising candidates for supporting orbital waves, because they contain transition-metal ions in which the orbital degree of freedom is important10,11. Orbitally ordered states have been found in several transition-metal compounds12,13, and orbitons have been predicted theoretically for LaMnO3 (refs 4, 5). Here we report experimental evidence for orbitons in LaMnO3, using Raman scattering measurements. We perform a model calculation of orbiton resonances which provides a good fit to the experimental data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dispersion relation and schematic illustration of an orbital wave.
Figure 2: Experimental results for Raman scattering spectra of a detwinned LaMnO3 crystal.
Figure 3: Comparison between the experimental and theoretical Raman scattering spectra for LaMnO3.

Similar content being viewed by others

References

  1. Anderson, P. W. Basic Notions of Condensed Matter Physics (Benjamin-Cummings, London, 1984).

    Google Scholar 

  2. Cyrot, M. & Lyon-Caen, C. Orbital superlattice in the degenerate Hubbard model. J. Phys. (Paris) 36, 253–266 (1975).

    Article  CAS  Google Scholar 

  3. Komarov, A. G., Korovin, L. I. & Kudinov, E. K. Elementary excitation in systems with ‘frozen’ spin. Sov. Phys. Solid State 17, 1531–1533 (1976).

    Google Scholar 

  4. Ishihara, S., Inoue, J. & Maekawa, S. Electronic structure and effective Hamiltonian in perovskite Mn oxides. Physica C 263, 130–133 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Ishihara, S., Inoue, J. & Maekawa, S. Effective Hamiltonian in manganites: Study of the orbital and spin structures. Phys. Rev. B 55, 8280–8286 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Khaliullin, G. & Oudovenko, V. Spin and orbital excitation spectrum in the Kugel-Khomskii model. Phys. Rev. B 56, R14243–R14246 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Feiner, L. F., Oleś, A. M. & Zaanen, J. Quantum disorder versus order-out-of-disorder in the Kugel-Khomskii model. J. Phys. Condens. Matter 10, L555–L561 (1998).

    Article  ADS  CAS  Google Scholar 

  8. van den Brink, J., Stekelenburg, W., Khomskii, D. I., Sawatzky, G. A. & Kugel, K. I. Elementary excitations in the coupled spin-orbit model. Phys. Rev. B 58, 10276–10282 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Perebeinos, V. & Allen, P. B. Toward a theory of orbiton dispersion in LaMnO3. Phys. Status Solidi B 215, 607–615 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Ito, Y. & Akimitsu, J. Observation of orbital ordering in K2CuF4. J. Phys. Soc. Jpn 40, 1333–1338 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Murakami, Y. et al. Resonant x-ray scattering from orbital ordering in LaMnO3. Phys. Rev. Lett. 81, 582–585 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3. Phys. Rev. 100, 564–573 (1955).

    Article  ADS  CAS  Google Scholar 

  15. Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).

    Article  ADS  CAS  Google Scholar 

  16. Kugel, K. I. & Khomskii, D. I. Crystal structure and magnetic properties of substances with orbital degeneracy. Sov. Phys. JETP 37, 725–730 (1973).

    ADS  Google Scholar 

  17. Rodriguez-Carvajal, J., Hennion, M., Moussa, F. & Moudden, A. H. Neutron diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3. Phys. Rev. B 57, R3189–R3192 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Wollan, E. O. & Koehler, W. C. Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La, xCa]MnO3. Phys. Rev. 100, 545–563 (1955).

    Article  ADS  CAS  Google Scholar 

  19. Matsumoto, G. Study of (La1-xCax)MnO3. I. Magnetic structure of LaMnO3. J. Phys. Soc. Jpn 29, 606–615 (1970).

    Article  ADS  CAS  Google Scholar 

  20. Kaplan, M. D. & Vekhter, B. G. Cooperative Phenomena in Jahn-Teller Crystals (Plenum, New York, 1995).

    Book  Google Scholar 

  21. Saitoh, T. et al. Electronic structure of La1-xSrxMnO3 studied by photoemission and x-ray absorption spectroscopy. Phys. Rev. B 51, 13942–13951 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Arima, T. & Tokura, Y. Optical study of electronic structure in perovskite-type RMO3 (R = LaY; M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu). J. Phys. Soc. Jpn 64, 2488–2501 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Iliev, M. N. et al. Raman spectroscopy of orthorhombic perovskite YMnO3 and LaMnO3. Phys. Rev. B 57, 2872–2877 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Yamamoto, K., Kimura, T., Ishikawa, T., Katsufuji, T. & Tokura, Y. Raman spectroscopy of the charge-orbital ordering in layered manganites. Phys. Rev. B 61, 14706–14715 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Podobedov, V. B., Weber, A., Romero, D. B., Rice, J. P. & Drew, H. D. Effect of structural and magnetic transitions in La1-x M xMnO3 (M = Sr, Ca) single crystals in Raman scattering. Phys. Rev. B 58, 43–46 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Abrashev, M. V. et al. Comparative study of optical phonons in the rhombohedrally distorted perovskites LaAlO3 and LaMnO3. Phys. Rev. B 59, 4146–4153 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Inoue, J. et al. Raman scattering by orbital waves in perovskite LaMnO3. Physica B 237–238, 51–53 (1997).

    Article  ADS  Google Scholar 

  28. Schaack, G. in Light Scattering in Solids VII (eds Cardona, M. & Güntherodt, G.) 24–173 (Springer, Berlin, 2000).

    Book  Google Scholar 

  29. Mitchell, J. F. et al. Structural phase diagram of La1-xSrxMnO3+δ: Relationship to magnetic and transport properties. Phys. Rev. B 54, 6172–6183 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Hirota, K., Kaneko, N., Nishizawa, A. & Endoh, Y. Two-dimensional planar ferromagnetic coupling in LaMnO3. J. Phys. Soc. Jpn 65, 3736–3739 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Nagaosa, T. Katsufuji, P. Prelovšek and S. E. Barnes for discussions. This work was supported in part by NEDO Japan, CREST Japan, the Science and Technology Special Coordination Fund for Promoting Science and Technology, and Grant-in-Aid for Scientific Research Priority Area from the Ministry of Education, Science and Culture of Japan. S.O. acknowledges the financial support of JSPS. Part of the numerical calculation was performed in the supercomputing facilities in IMR, Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tokura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitoh, E., Okamoto, S., Takahashi, K. et al. Observation of orbital waves as elementary excitations in a solid. Nature 410, 180–183 (2001). https://doi.org/10.1038/35065547

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065547

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing