Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites

An Erratum to this article was published on 31 May 2001

Abstract

Nature abounds with intricate composite architectures composed of hard and soft materials synergistically intertwined to provide both useful functionality and mechanical integrity. Recent synthetic efforts to mimic such natural designs have focused on nanocomposites1,2,3,4,5, prepared mainly by slow procedures like monomer or polymer infiltration of inorganic nanostructures6,7 or sequential deposition8,9. Here we report the self-assembly of conjugated polymer/silica nanocomposite films with hexagonal, cubic or lamellar mesoscopic order using polymerizable amphiphilic diacetylene molecules as both structure-directing agents and monomers. The self-assembly procedure is rapid and incorporates the organic monomers uniformly within a highly ordered, inorganic environment. Polymerization results in polydiacetylene/silica nanocomposites that are optically transparent and mechanically robust. Compared to ordered diacetylene-containing films prepared as Langmuir monolayers10 or by Langmuir–Blodgett deposition10, the nanostructured inorganic host alters the diacetylene polymerization behaviour, and the resulting nanocomposite exhibits unusual chromatic changes in response to thermal, mechanical and chemical stimuli. The inorganic framework serves to protect, stabilize, and orient the polymer, and to mediate its function. The nanocomposite architecture also provides sufficient mechanical integrity to enable integration into devices and microsystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the PDA/silica nanocomposite evaporation-induced self-assembly process.
Figure 2: X-ray diffraction (XRD) patterns of nanocomposite thin films prepared using DA-EOn (where n = 3, 5, and 10) surfactants.
Figure 3: Representative transmission electron microscope (TEM) images of nanocomposite thin films (prepared as in Fig. 2b and c) and particles (formed by a related aerosol-assisted evaporation-induced self-assembly approach32).
Figure 4: Patterned polymerization induced by ultraviolet irradiation and the thermochromic and solvatochromic transition of a hexagonal PDA/silica nanocomposite film.

Similar content being viewed by others

References

  1. Dagani, R. Putting the “nano” into composites. Chem. Eng. News 77, 25–37 (1999).

    Article  Google Scholar 

  2. Giannelis, E. Polymer layered silicate nanocomposites. Adv. Mater. 8, 29–35 (1996).

    Article  CAS  Google Scholar 

  3. Asefa, T., Yoshina-Ishii, C., MacLachlan, M. J. & Ozin, G. A. New nanocomposites: putting organic function “inside” the channel walls of periodic mesoporous silica. J. Mater. Chem. 10, 1751–1755 (2000).

    Article  CAS  Google Scholar 

  4. Smith, R. C., Fischer, W. M. & Gin, D. L. Ordered poly(p-phenylenevinylene) matrix nanocomposites via lyotropic liquid-crystalline monomers. J. Am. Chem. Soc. 119, 4092–4093 (1997).

    Article  CAS  Google Scholar 

  5. Sellinger, A. et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature 394, 256–260 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Moller, K., Bein, T. & Fischer, R. X. Entrapment of PMMA polymer strands in micro- and mesoporous materials. Chem. Mater. 10, 1841–1852 (1998).

    Article  CAS  Google Scholar 

  7. Nguyen, T.-Q., Wu, J., Doan, V., Schwartz, B. J. & Tolbert, S. H. Control of energy transfer in oriented conjugated polymer-mesoporous silica composites. Science 288, 652–656 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Kleinfeld, E. R. & Ferguson, G. S. Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 265, 370–373 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Keller, S. W., Kim, H.-N. & Mallouk, T. E. Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: Toward molecular “beaker” epitaxy. J. Am. Chem. Soc. 116, 8817–8818 (1994).

    Article  CAS  Google Scholar 

  10. Sasaki, D. Y., Carpick, R. W. & Burns, A. R. High molecular orientation in mono- and trilayer polydiacetylene films imaged by atomic force microscopy. J. Colloid Interf. Sci. 229, 490–496 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Charych, D., Nagy, J., Spevak, W. & Bednarski, M. Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science 261, 585–588 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Cheng, Q. & Stevens, R. Charge-induced chromatic transition of amino acid-derivatized polydiacetylene liposomes. Langmuir 14, 1974–1976 (1998).

    Article  CAS  Google Scholar 

  13. Cheng, Q., Yamamoto, M. & Stevens, R. Amino acid terminated polydiacetylene lipid microstructures: morphology and chromatic transition. Langmuir 16, 5333-5342 (2000).

    Google Scholar 

  14. Mazumdar, S. Prospects for the polymer nanoengineer. Science 288, 630–631 (2000).

    Article  CAS  Google Scholar 

  15. Lu, Y. F. et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip coating. Nature 389, 364–368 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Israelachvili, J. N. Intermolecular and Surface Forces Ch. 17 (Academic, San Diego, 1992).

    Google Scholar 

  17. Monnier, A. et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261, 1299–1303 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Day, D. & Ringsdorf, H. Polymerization of diacetylene carbonic acid monolayers at the gas-water interface. J. Polym. Sci. Polym. Lett. Edn 16, 205–210 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Gaines, G. L. (ed.) in Insoluble Monolayers at Liquid-Gas Interfaces 281–300 (John Wiley, New York, 1966).

    Google Scholar 

  20. Menzel, H., Mowery, M. D., Cai, M. & Evans, C. E. Vertical positioning of internal molecular scaffolding within a single molecular layer. J. Phys. Chem. B 102, 9550–9556 (1998).

    Article  CAS  Google Scholar 

  21. Collins, M. Optical-properties of poly-diacetylene monolayers. J. Polym. Sci. B 26, 367–372 (1988).

    Article  CAS  Google Scholar 

  22. Kuriyama, K., Kikuchi, H. & Kajiyama, T. Molecular packings-photopolymerization behavior relationship of diacetylene Langmuir-Blodgett films. Langmuir 12, 6468–6472 (1996).

    Article  CAS  Google Scholar 

  23. Spevak, W. et al. Polymerized liposomes containing C-glycosides of sialic acid: Potent inhibitors of influenza virus in vitro infectivity. J. Am. Chem. Soc. 115, 1146–1147 (1993).

    Article  CAS  Google Scholar 

  24. Frankel, D. A. & O'Brien, D. F. Supramolecular assemblies of diacetylenic aldonamides. J. Am. Chem. Soc. 113, 7436–7437 (1991).

    Article  CAS  Google Scholar 

  25. Frye, G. C., Ricco, A. J., Martin, S. J. & Brinker, C. J. in Mater. Res. Soc. (eds Brinker, C. J., Clark, D. E. & Ulrich, D. R.) 349–354 (Reno, Nevada, 1988).

    Google Scholar 

  26. Patel, G. N., Chance, R. R. & Witt., J. D. A planar-non-planar conformational transition in conjugated polymer solutions. J. Chem. Phys. 70, 4387–4392 (1979).

    Article  ADS  CAS  Google Scholar 

  27. Burns, A. R., Carpick, R. W., Sasaki, D. Y. & Shelnutt, J. A. Mechanochromism, shear force anisotropy, and molecular mechanics in polydiacetylene monolayers. Tribol. Lett. (in the press).

  28. Fan, H. et al. Rapid prototyping of patterned functional nanostructures. Nature 405, 56–60 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Brinker, C. J. Lu, Y., Sellinger, A. & Fan, H. Evaporation-induced self-assembly: nanostructures made easy. Adv. Mater. 11, 579–585 (1999).

    Article  CAS  Google Scholar 

  30. Day, D. R. & Lando, J. B. Conduction in polydiacetylene bilayers. J. Appl. Polym. Sci. 26, 1605–1612 (1981).

    Article  CAS  Google Scholar 

  31. Suzuoki, Y., Kimura, A. & Mizutani, T. in Proc. 7th Int. Symp. Electrets 850–855 (IEEE, New York, 1991).

    Google Scholar 

  32. Lu, Y. et al. Aerosol-assisted self-assembly of spherical, silica nanoparticles exhibiting hexagonal, cubic and vesicular mesophases. Nature 398, 223–226 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Curro and F. van Swol for technical discussions and T. Bucheit for the nano-indentation results. This work was supported by the US Department of Energy Basic Energy Sciences Program, the Sandia National Laboratories Laboratory-Directed Research and Development Program, the National Aeronautics and Space Administration, the UNM/NSF Center for Micro-engineered Materials, and the Defense Advanced Research Projects Agency Bio-Weapons Defense Program. TEM investigations were performed in the Department of Earth and Planetary Sciences at the University of New Mexico. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jeffrey Brinker.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Yang, Y., Sellinger, A. et al. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 410, 913–917 (2001). https://doi.org/10.1038/35073544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35073544

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing