Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

Abstract

The current rise in atmospheric CO2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems1,2, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO2 concentrations3,4, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials5. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO2 concentrations (565 µl l-1). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ciais, P., Peylin, P. & Bousquet, P. Regional biospheric fluxes as inferred from atmospheric CO2 measurements. Ecol. Appl. 10, 1574–1589 (2000).

    Google Scholar 

  2. Houghton, R. A., Hackler, J. L. & Lawrence, K. T. The U.S. carbon budget: contributions from land-use change. Science 285, 574–578 (1999).

    Article  CAS  Google Scholar 

  3. DeLucia, E. H. et al. Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284, 1177–1179 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Hendrey, G. H., Ellsworth, D. S., Lewin, K. F. & Nagy, J. A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Glob. Change Biol. 5, 293–309 (1999).

    Article  ADS  Google Scholar 

  5. Schlesinger, W. H. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348, 232–234 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Ellsworth, D. S. CO2 enrichment in a maturing pine forest: Are CO2 exchange and water status in the canopy affected? Plant Cell Environ. 22, 461–472 (1999).

    Article  Google Scholar 

  7. Matamala, R. & Schlesinger, W. H. Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperature forest ecosystem. Glob. Change Biol. 6, 967–980 (2000).

    Article  ADS  Google Scholar 

  8. Cambardella, C. A. & Elliott, E. T. Methods for physical separation and characterization of soil organic matter fractions. Geoderma 56, 449–457 (1993).

    Article  ADS  Google Scholar 

  9. Gill, R. A., Burke, I. C., Lauenroth, W. K. & Milchunas, D. G. Relationship between root biomass and soil organic matter pools in the shortgrass steppe of eastern Colorado. Ecosystems 2, 226–236 (1999).

    Article  Google Scholar 

  10. Jastrow, J. D., Boutton, T. W. & Miller, R. M. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Sci. Soc. Am. J. 60, 801–807 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Andrews, J. A. Changes to Belowground Carbon Dioxide Dynamics under CO2 Enrichment of a Forest Ecosystem. Thesis, Duke Univ. (1999).

    Google Scholar 

  12. Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).

    Article  Google Scholar 

  13. Balesdent, J., Wagner, G. H. & Mariotti, A. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance. Soil Sci. Soc. Am. J. 52, 118–124 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Finzi, A. C., Allen, A. S., DeLucia, E. H., Ellsworth, D. S. & Schlesinger, W. H. Forest litter production, chemistry, and decomposition following two years of Free-Air CO2 Enrichment. Ecology 82, 470–484 (2001).

    Google Scholar 

  15. Jorgensen, J. R., Wells, C. G. & Metz, L. J. Nutrient changes in decomposing loblolly pine forest floor. Soil Sci. Soc. Am. J. 44, 1307–1314 (1980).

    Article  ADS  Google Scholar 

  16. Lichter, J., Lavine, M. L., Mace, K. A., Richter, D. D. & Schlesinger, W. H. Throughfall chemistry in a loblolly pine plantation under elevated atmospheric CO2 concentrations. Biogeochemistry 50, 73–93 (2000).

    Article  CAS  Google Scholar 

  17. Fox, T. R. & Comerford, N. B. Low-molecular-weight organic acids in selected forest soils of the southeastern USA. Soil Sci. Soc. Am. J. 54, 1139–1144 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Delucia, E. H., Callaway, R. M., Thomas, E. M. & Schlesinger, W. H. Mechanisms of phosphorus acquisition for ponderosa pine under high CO2 and temperature. Ann. Bot. 79, 111–120 (1997).

    Article  CAS  Google Scholar 

  19. Jones, T. H. et al. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280, 441–443 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Hungate, B. A. et al. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388, 576–579 (1997).

    Article  ADS  CAS  Google Scholar 

  21. van Kessel, C., Horwath, W. R., Hartwig, U., Harris, D. & Luscher, A. Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years. Glob. Change Biol. 6, 435–444 (2000).

    Article  ADS  Google Scholar 

  22. Harrison, K., Broecker, W. & Bonani, G. A strategy for estimating the impact of CO2 fertilization on soil carbon storage. Glob. Biogeochem. Cycles 7, 69–80 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled model. Nature 408, 184–187 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Richter, D. D., Markewitz, D., Trumbore, S. & Wells, C. G. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400, 56–58 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Schiffman, P. N. & Johnson, W. C. Phytomass and detrital carbon storage during forest regrowth in the southeastern United States piedmont. Can. J. Forest Res. 19, 69–78 (1989).

    Article  Google Scholar 

  26. Delcourt, H. R. & Harris, W. F. Carbon budget of the southeastern U.S. biota: analysis of historical change in trend from source to sink. Science 210, 321–323 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Brown, S. L. & Schroeder, P. E. Spatial patterns of aboveground production and mortality of woody biomass for eastern U.S. forests. Ecol. Appl. 9, 968–980 (1999).

    Google Scholar 

  28. Schimel, D. et al. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287, 2004–2006 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Casperson, J. P. et al. Contributions of land-use history to carbon accumulation in U.S. forests. Science 290, 1148–1151 (2000).

    Article  ADS  Google Scholar 

  30. Weisberg, S. Applied Linear Regression 114–117 (Wiley, New York, 1985).

    MATH  Google Scholar 

Download references

Acknowledgements

We thank K. Harrison and J. Andrews for collecting pretreatment samples for covariance analysis; H. Hemric, R. Gill, M. Lavine and A. Mace for technical assistance; L. Giles for mass spectrometry analyses; and J. Clark, E. Davidson, L. Dellwo, A. Hirsch and D. Schimel for critical reviews of the manuscript. Operated in cooperation with Brookhaven National Laboratory, the Duke Forest FACE project is supported by the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Schlesinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlesinger, W., Lichter, J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411, 466–469 (2001). https://doi.org/10.1038/35078060

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078060

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing