Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ionic conductivity in crystalline polymer electrolytes

Abstract

Polymer electrolytes are the subject of intensive study, in part because of their potential use as the electrolyte in all-solid-state rechargeable lithium batteries1. These materials are formed by dissolving a salt (for example LiI) in a solid host polymer such as poly(ethylene oxide) (refs 2, 3, 4, 5, 6), and may be prepared as both crystalline and amorphous phases. Conductivity in polymer electrolytes has long been viewed as confined to the amorphous phase above the glass transition temperature, Tg, where polymer chain motion creates a dynamic, disordered environment that plays a critical role in facilitating ion transport2,3,7,8,9. Here we show that, in contrast to this prevailing view, ionic conductivity in the static, ordered environment of the crystalline phase can be greater than that in the equivalent amorphous material above Tg. Moreover, we demonstrate that ion transport in crystalline polymer electrolytes can be dominated by the cations, whereas both ions are generally mobile in the amorphous phase10. Restriction of mobility to the lithium cation is advantageous for battery applications. The realization that order can promote ion transport in polymers is interesting in the context of electronically conducting polymers, where crystallinity favours electron transport11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of the polymer electrolyte PEO6:LiAsF6.
Figure 2
Figure 3
Figure 4: NMR data.

Similar content being viewed by others

References

  1. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Gray, F. M. Polymer Electrolytes (RSC Materials Monographs, The Royal Society of Chemistry, Cambridge, 1997).

    Google Scholar 

  3. Scrosati, B. (ed.) Applications of Electroactive Polymers (Chapman & Hall, London, 1993).

    Book  Google Scholar 

  4. Bruce, P. G. (ed.) Solid State Electrochemistry (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  5. Fenton, D. E., Parker, J. M. & Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973).

    Article  CAS  Google Scholar 

  6. Armand, M. B., Chabango, J. M. & Duclot, M. J. in Fast Ion Transport in Solids (eds Vashishta, P., Mundy, J. N. & Shenoy, G. K.) 131–136 (North-Holland, Amsterdam, 1979).

    Google Scholar 

  7. Berthier, C. et al. Microscopic investigation of ionic conductivity in alkali metal salts—poly(ethylene oxide) adducts. Solid State Ionics 11, 91–95 (1983).

    Article  CAS  Google Scholar 

  8. Ratner, M. A. in Polymer Electrolytes Reviews—1 (eds MacCallum, J. R. & Vincent, C. A.) 173–236 (Elsevier Applied Science, London, New York, 1987).

    Google Scholar 

  9. Druger, S. D., Ratner, M. A. & Nitzan, A. Solid State Ionics 9/10, 1115–1120 (1983).

    Article  Google Scholar 

  10. Gorecki, W. et al. NMR, DSC and conductivity study of the polymer solid electrolytes P(EO)(LiCp+1F2p+3SO3)x. Solid State Ionics 28–30, 1018–1022 (1988).

    Article  Google Scholar 

  11. Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 578–580 (1977).

  12. Heeger, A. J. Charge transfer in conducting polymers. Faraday Discuss. Chem. Soc. 88, 203–211 (1989).

    Article  CAS  Google Scholar 

  13. Andreev, Y. G., Lightfoot, P. & Bruce, P. G. A general Monte Carlo approach to structure solution from powder-diffraction data: Application to poly(ethylene oxide)3:Lin(SO2CF3)2. J. Appl. Crystallogr. 18, 294–305 (1997).

    Article  Google Scholar 

  14. Andreev, Y. G. & Bruce, P. G. Solving crystal structures of molecular solids without single crystals: a simulated annealing approach. J. Chem. Soc. Dalton Trans. 4071–4080 (1998).

  15. MacGlashan, G. S., Andreev, Y. G. & Bruce, P. G. Structure of the polymer electrolyte poly(ethylene oxide)3:LiAsF6. Nature 398, 792–794 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Andreev, Y. G., Lightfoot, P. & Bruce, P. G. Structure of the polymer electrolyte poly(ethylene oxide)3:LiN(SO2CF3)2 determined by powder diffraction using a powerful Monte Carlo approach. J. Chem. Soc. Chem. Commun. 2169–2170 (1996).

  17. Lightfoot, P., Mehta, M. A. & Bruce, P. G. Crystal-structure of the polymer electrolyte poly(ethylene oxide)3LiCF3SO3. Science 262, 883–885 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Gadjourova, Z., Martin y Marero, D., Andersen, K. H., Andreev, Y. G. & Bruce, P. G. Structures of the polymer electrolyte complexes PEO6:LiXF6(X = P,Sb), determined from neutron powder diffraction data. Chem. Mater. 13, 1282–1285 (2001).

    Article  CAS  Google Scholar 

  19. Roux, C., Gorecki, W., Sanchez, J.-Y., Jeannin, M. & Beloritzky, E. Physical properties of (PPO)n(LiTFSI) polymer electrolytes: nuclear magnetic resonance investigation and comparison with (PEO)n(LiTFSI). J. Phys. Condens. Matter 8, 7005–7017 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Shi, J. & Vincent, C. A. The effect of molecular weight on cation mobility in polymer electrolytes. Solid State Ionics 60, 11–17 (1993).

    Article  CAS  Google Scholar 

  21. Bruce, P. G. Coordination chemistry in the solid state. Phil. Trans. R. Soc. Lond. A 354, 415–436 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Wright, P. V., Zheng, Y., Bhatt, D., Richardson, T. & Ungar, G. Supramolecular order in new polymer electrolytes. Polym. Int. 47, 34–42 (1998).

    Article  CAS  Google Scholar 

  23. Chung, S. H., Wang, Y., Greenbaum, S. G., Golodnitsky, D. & Peled, E. Unaxial stress effects in poly(ethylene oxide)-LiI polymer electrolyte film. A 7Li nuclear magnetic resonance study. Electrochem. Solid-State Lett. 2, 553–555 (1999).

    Article  CAS  Google Scholar 

  24. Inaguma, Y. et al. High ionic-conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Bruce, P. G. & West, A. R. Ion trapping and its effect on the conductivity of LISICON and other solid electrolytes. J. Solid State Chem. 53, 430–434 (1984).

    Article  ADS  CAS  Google Scholar 

  26. MacFarlane, D. R., Huang, J. H. & Forsyth, M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 402, 792–794 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Kudo, T. & Fueki, K. Solid State Ionics (Kodansha Ltd, Tokyo; VCH, Weinheim, 1990).

    Google Scholar 

  28. Angell, C. A., Liu, C. & Sanchez, E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362, 137–139 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the UK Engineering and Physical Sciences Research Council for financial support (P.G.B.) and the Overseas Research Scheme for an award (Z.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Bruce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadjourova, Z., Andreev, Y., Tunstall, D. et al. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001). https://doi.org/10.1038/35087538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087538

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing